Biotechnological response curve of the cyanobacterium Spirulina subsalsa to light energy gradient

Author:

Pistelli Luigi,Del Mondo Angelo,Smerilli Arianna,Corato Federico,Sansone Clementina,Brunet Christophe

Abstract

Abstract Background Microalgae represent a suitable and eco-sustainable resource for human needs thanks to their fast growth ability, together with the great diversity in species and intracellular secondary bioactive metabolites. These high-added-value compounds are of great interest for human health or animal feed. The intracellular content of these valuable compound families is tightly associated with the microalgal biological state and responds to environmental cues, e.g., light. Our study develops a Biotechnological response curve strategy exploring the bioactive metabolites synthesis in the marine cyanobacterium Spirulina subsalsa over a light energy gradient. The Relative Light energy index generated in our study integrates the red, green and blue photon flux density with their relative photon energy. The Biotechnological response curve combined biochemical analysis of the macromolecular composition (total protein, lipid, and carbohydrate content), total sterols, polyphenols and flavonoids, carotenoids, phenolic compounds, vitamins (A, B1, B2, B6, B9, B12, C, D2, D3, E, H, and K1), phycobiliproteins, together with the antioxidant activity of the biomass as well as the growth ability and photosynthesis. Results Results demonstrated that light energy significantly modulate the biochemical status of the microalga Spirulina subsalsa revealing the relevance of the light energy index to explain the light-induced biological variability. The sharp decrease of the photosynthetic rate at high light energy was accompanied with an increase of the antioxidant network response, such as carotenoids, total polyphenols, and the antioxidant capacity. Conversely, low light energy favorized the intracellular content of lipids and vitamins (B2, B6, B9, D3, K1, A, C, H, and B12) compared to high light energy. Conclusions Results of the Biotechnological response curves were discussed in their functional and physiological relevance as well as for the essence of their potential biotechnological applications. This study emphasized the light energy as a relevant tool to explain the biological responses of microalgae towards light climate variability, and, therefore, to design metabolic manipulation of microalgae.

Funder

Regione Campania

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Energy (miscellaneous),Applied Microbiology and Biotechnology,Renewable Energy, Sustainability and the Environment,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3