Author:
Dai Bing,Liu Si,Shen Wenxin,Chen Li,Zhou Qianlan,Han Lina,Zhang Qinzhen,Shan Lishen
Abstract
Abstract
Background
Asthma is a heterogenous disease that characterized by airway remodeling. SYVN1 (Synoviolin 1) acts as an E3 ligase to mediate the suppression of endoplasmic reticulum (ER) stress through ubiquitination and degradation. However, the role of SYVN1 in the pathogenesis of asthma is unclear.
Results
In the present study, an ovalbumin (OVA)-induced murine model was used to evaluate the effect of SYVN1 on asthma. An increase in SYVN1 expression was observed in the lungs of mice after OVA induction. Overexpression of SYVN1 attenuated airway inflammation, goblet cell hyperplasia and collagen deposition induced by OVA. The increased ER stress-related proteins and altered epithelial-mesenchymal transition (EMT) markers were also inhibited by SYVN1 in vivo. Next, TGF-β1-induced bronchial epithelial cells (BEAS-2B) were used to induce EMT process in vitro. Results showed that TGF-β1 stimulation downregulated the expression of SYVN1, and SYVN1 overexpression prevented ER stress response and EMT process in TGF-β1-induced cells. In addition, we identified that SYVN1 bound to SIRT2 and promoted its ubiquitination and degradation. SIRT2 overexpression abrogated the protection of SYVN1 on ER stress and EMT in vitro.
Conclusions
These data suggest that SYVN1 suppresses ER stress through the ubiquitination and degradation of SIRT2 to block EMT process, thereby protecting against airway remodeling in asthma.
Funder
Basic Scientific Research Project of Colleges and Universities of Liaoning Province, Key Program
Basic Scientific Research Project of Colleges and Universities of Liaoning Province, General Program
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献