A high throughput multiplex PCR assay for simultaneous detection of seven aminoglycoside-resistance genes in Enterobacteriaceae

Author:

Hu Xiumei,Xu Banglao,Yang Yinmei,Liu Dayu,Yang Mengjie,Wang Ji,Shen Hongwei,Zhou Xiaomian,Ma Xuejun

Abstract

Abstract Background The aminoglycoside-resistance genes encoding aminoglycoside modifying enzymes and 16S rRNA methyltransferases are main factors contributing to increasing resistance to aminoglycosides. Characterization and distribution of antimicrobial resistance gene profiles provide important information on the potential difficulty of treatment of bacteria. Several molecular methods have been developed to investigate the prevalence of aminoglycoside-resistance genes. These existing methods are time-consuming, labor-intensive, expensive or limited sensitivity in the epidemiological investigation. Therefore, it is necessary to develop a rapid, less-costly and high throughput and sensitive method to investigate the distribution of antimicrobial resistance gene in clinical isolates. Results In this study, we developed a GeXP analyzer-based multiplex PCR assay to simultaneously detect seven aminoglycoside-resistance genes, including aac(3)-II, aac(6′ )-Ib, aac(6′ )-II, ant(3″ )-I, aph(3′ )-VI, armA and rmtB, and to analyze the distribution of these genes in clinical Enterobacteriaceae isolates. Under optimized conditions, this assay achieved a limit-of-detection as low as 10 copies of each of the seven genes. The presented method was applied to analyze the distribution of aminoglycoside-resistance genes in 56 clinical Enterobacteriaceae isolates, and the results were compared with that of the conventional single PCR assay. Kappa values of the two methods for detecting each of the seven resistance genes were 0.831, 0.846, 0.810, 0.909, 0.887, 0.810 and 0.825, respectively. Conclusion This GeXP assay is demonstrated to be a rapid, cost-effective and high throughput method with high sensitivity and specificity for simultaneously detecting seven common aminoglycoside-resistance genes.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3