Polymorphism of virulence genes and biofilm associated with in vitro induced resistance to clarithromycin in Helicobacter pylori

Author:

Rosli Naim Asyraf,Al-Maleki Anis Rageh,Loke Mun Fai,Chua Eng Guan,Alhoot Mohammed Abdelfatah,Vadivelu Jamuna

Abstract

Abstract Background Clarithromycin-containing triple therapy is commonly used to treat Helicobacter pylori infections. Clarithromycin resistance is the leading cause of H. pylori treatment failure. Understanding the specific mutations that occur in H. pylori strains that have evolved antibiotic resistance can help create a more effective and individualised antibiotic treatment plan. However, little is understood about the genetic reprogramming linked to clarithromycin exposure and the emergence of antibiotic resistance in H. pylori. Therefore, this study aims to identify compensatory mutations and biofilm formation associated with the development of clarithromycin resistance in H. pylori. Clarithromycin-sensitive H. pylori clinical isolates were induced to develop clarithromycin resistance through in vitro exposure to incrementally increasing concentration of the antibiotic. The genomes of the origin sensitive isolates (S), isogenic breakpoint (B), and resistant isolates (R) were sequenced. Single nucleotide variations (SNVs), and insertions or deletions (InDels) associated with the development of clarithromycin resistance were identified. Growth and biofilm production were also assessed. Results The S isolates with A2143G mutation in the 23S rRNA gene were successfully induced to be resistant. According to the data, antibiotic exposure may alter the expression of certain genes, including those that code for the Cag4/Cag protein, the vacuolating cytotoxin domain-containing protein, the sel1 repeat family protein, and the rsmh gene, which may increase the risk of developing and enhances virulence in H. pylori. Enhanced biofilm formation was detected among R isolates compared to B and S isolates. Furthermore, high polymorphism was also detected among the genes associated with biofilm production. Conclusions Therefore, this study suggests that H. pylori may acquire virulence factors while also developing antibiotic resistance due to clarithromycin exposure.

Funder

Ministry of Higher Education, Malaysia

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Virology,Gastroenterology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3