Integrating functional data analysis with case-based reasoning for hypertension prognosis and diagnosis based on real-world electronic health records

Author:

Qi Ping,Wang Fucheng,Huang Yong,Yang Xiaoling

Abstract

Abstract Background Hypertension is the fifth chronic disease causing death worldwide. The early prognosis and diagnosis are critical in the hypertension care process. Inspired by human philosophy, CBR is an empirical knowledge reasoning method for early detection and intervention of hypertension by only reusing electronic health records. However, the traditional similarity calculation method often ignores the internal characteristics and potential information of medical examination data. Methods In this paper, we first calculate the weights of input attributes by a random forest algorithm. Then, the risk value of hypertension from each medical examination can be evaluated according to the input data and the attribute weights. By fitting the risk values into a risk curve of hypertension, we calculate the similarity between different community residents, and obtain the most similar case according to the similarity. Finally, the diagnosis and treatment protocol of the new case can be given. Results The experiment data comes from the medical examination of Tianqiao Community (Tongling City, Anhui Province, China) from 2012 to 2021. It contains 4143 community residents and 43,676 medical examination records. We first discuss the effect of the influence factor and the decay factor on similarity calculation. Then we evaluate the performance of the proposed FDA-CBR algorithm against the GRA-CBR algorithm and the CS-CBR algorithm. The experimental results demonstrate that the proposed algorithm is highly efficient and accurate. Conclusions The experiment results show that the proposed FDA-CBR algorithm can effectively describe the variation tendency of the risk value and always find the most similar case. The accuracy of FDA-CBR algorithm is higher than GRA-CBR algorithm and CS-CBR algorithm, increasing by 9.94 and 16.41%, respectively.

Funder

Key Technologies Research and Development Program of Anhui Province

key program in the youth elite support plan in universities of Anhui province

Natural Science Foundation of Universities of Anhui Province

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Age-groups classification of Irrawaddy dolphins based on dorsal fin geometric morphological features;Ecological Indicators;2023-10

2. Becalm: Intelligent Monitoring of Respiratory Patients;IEEE Journal of Biomedical and Health Informatics;2023-08

3. A Case-Based Reasoning System-Based Random Forest for Classification;Handbook of Research on Driving Socioeconomic Development With Big Data;2023-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3