Machine learning algorithms to predict intraoperative hemorrhage in surgical patients: a modeling study of real-world data in Shanghai, China

Author:

Shi Ying,Zhang Guangming,Ma Chiye,Xu Jiading,Xu Kejia,Zhang Wenyi,Wu Jianren,Xu Liling

Abstract

Abstract Background Prediction tools for various intraoperative bleeding events remain scarce. We aim to develop machine learning-based models and identify the most important predictors by real-world data from electronic medical records (EMRs). Methods An established database of surgical inpatients in Shanghai was utilized for analysis. A total of 51,173 inpatients were assessed for eligibility. 48,543 inpatients were obtained in the dataset and patients were divided into haemorrhage (N = 9728) and without-haemorrhage (N = 38,815) groups according to their bleeding during the procedure. Candidate predictors were selected from 27 variables, including sex (N = 48,543), age (N = 48,543), BMI (N = 48,543), renal disease (N = 26), heart disease (N = 1309), hypertension (N = 9579), diabetes (N = 4165), coagulopathy (N = 47), and other features. The models were constructed by 7 machine learning algorithms, i.e., light gradient boosting (LGB), extreme gradient boosting (XGB), cathepsin B (CatB), Ada-boosting of decision tree (AdaB), logistic regression (LR), long short-term memory (LSTM), and multilayer perception (MLP). An area under the receiver operating characteristic curve (AUC) was used to evaluate the model performance. Results The mean age of the inpatients was 53 ± 17 years, and 57.5% were male. LGB showed the best predictive performance for intraoperative bleeding combining multiple indicators (AUC = 0.933, sensitivity = 0.87, specificity = 0.85, accuracy = 0.87) compared with XGB, CatB, AdaB, LR, MLP and LSTM. The three most important predictors identified by LGB were operative time, D-dimer (DD), and age. Conclusions We proposed LGB as the best Gradient Boosting Decision Tree (GBDT) algorithm for the evaluation of intraoperative bleeding. It is considered a simple and useful tool for predicting intraoperative bleeding in clinical settings. Operative time, DD, and age should receive attention.

Funder

Key Medical Specialty Fund Projects of Shanghai

Changning District Committee of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3