Proposal of neural network model for neurocognitive rehabilitation and its comparison with fuzzy expert system model

Author:

Kotyrba Martin,Habiballa Hashim,Volna Eva,Jarusek Robert,Smolka Pavel,Prasek Martin,Malina Marek,Jaremova Vladena

Abstract

AbstractThis article focuses on the development of algorithms for a smart neurorehabilitation system, whose core is made up of artificial neural networks. The authors of the article have proposed a completely unique transfer of ACE-R results to the CHC model. This unique approach allows for the saturation of the CHC model domains according to modified ACE-R factor analysis. The outputs of the proposed algorithm thus enable the automatic creation of a personalized and optimized neurorehabilitation plan for individual patients to train their cognitive functions. A set of tasks in 6 levels of difficulty (level 1 to level 6) was designed for each of the nine CHC model domains. For each patient, the results of the ACE-R screening helped deter-mine the specific CHC domains to be rehabilitated, as well as the initial gaming level for rehabilitation in each domain. The proposed artificial neural network algorithm was adapted to real data from 703 patients. Experimental outputs were compared to the outputs of the initially designed fuzzy expert system, which was trained on the same real data, and all outputs from both systems were statistically evaluated against expert conclusions that were available. It is evident from the conducted experimental study that the smart neurorehabilitation system using artificial neural networks achieved significantly better results than the neurorehabilitation system whose core is a fuzzy expert system. Both algorithms are implemented into a comprehensive neurorehabilitation portal (Eddie), which was supported by a research project from the Technology Agency of the Czech Republic.

Funder

Technologická Agentura České Republiky

Ostravská Univerzita v Ostravě

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3