The implementation of natural language processing to extract index lesions from breast magnetic resonance imaging reports

Author:

Liu Yi,Liu Qing,Han Chao,Zhang Xiaodong,Wang XiaoyingORCID

Abstract

Abstract Background There are often multiple lesions in breast magnetic resonance imaging (MRI) reports and radiologists usually focus on describing the index lesion that is most crucial to clinicians in determining the management and prognosis of patients. Natural language processing (NLP) has been used for information extraction from mammography reports. However, few studies have investigated NLP in breast MRI data based on free-form text. The objective of the current study was to assess the validity of our NLP program to accurately extract index lesions and their corresponding imaging features from free-form text of breast MRI reports. Methods This cross-sectional study examined 1633 free-form text reports of breast MRIs from 2014 to 2017. First, the NLP system was used to extract 9 features from all the lesions in the reports according to the Breast Imaging Reporting and Data System (BI-RADS) descriptors. Second, the index lesion was defined as the lesion with the largest number of imaging features. Third, we extracted the values of each imaging feature and the BI-RADS category from each index lesion. To evaluate the accuracy of our system, 478 reports were manually reviewed by two individuals. The time taken to extract data by NLP was compared with that by reviewers. Results The NLP system extracted 889 lesions from 478 reports. The mean number of imaging features per lesion was 6.5 ± 2.1 (range: 3–9; 95% CI: 6.362–6.638). The mean number of imaging features per index lesion was 8.0 ± 1.1 (range: 5–9; 95% CI: 7.901–8.099). The NLP system demonstrated a recall of 100.0% and a precision of 99.6% for correct identification of the index lesion. The recall and precision of NLP to correctly extract the value of imaging features from the index lesions were 91.0 and 92.6%, respectively. The recall and precision for the correct identification of the BI-RADS categories were 96.6 and 94.8%, respectively. NLP generated the total results in less than 1 s, whereas the manual reviewers averaged 4.47 min and 4.56 min per report. Conclusions Our NLP method successfully extracted the index lesion and its corresponding information from free-form text.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3