AI and semantic ontology for personalized activity eCoaching in healthy lifestyle recommendations: a meta-heuristic approach

Author:

Chatterjee Ayan,Pahari Nibedita,Prinz Andreas,Riegler Michael

Abstract

Abstract Background Automated coaches (eCoach) can help people lead a healthy lifestyle (e.g., reduction of sedentary bouts) with continuous health status monitoring and personalized recommendation generation with artificial intelligence (AI). Semantic ontology can play a crucial role in knowledge representation, data integration, and information retrieval. Methods This study proposes a semantic ontology model to annotate the AI predictions, forecasting outcomes, and personal preferences to conceptualize a personalized recommendation generation model with a hybrid approach. This study considers a mixed activity projection method that takes individual activity insights from the univariate time-series prediction and ensemble multi-class classification approaches. We have introduced a way to improve the prediction result with a residual error minimization (REM) technique and make it meaningful in recommendation presentation with a Naïve-based interval prediction approach. We have integrated the activity prediction results in an ontology for semantic interpretation. A SPARQL query protocol and RDF Query Language (SPARQL) have generated personalized recommendations in an understandable format. Moreover, we have evaluated the performance of the time-series prediction and classification models against standard metrics on both imbalanced and balanced public PMData and private MOX2-5 activity datasets. We have used Adaptive Synthetic (ADASYN) to generate synthetic data from the minority classes to avoid bias. The activity datasets were collected from healthy adults (n = 16 for public datasets; n = 15 for private datasets). The standard ensemble algorithms have been used to investigate the possibility of classifying daily physical activity levels into the following activity classes: sedentary (0), low active (1), active (2), highly active (3), and rigorous active (4). The daily step count, low physical activity (LPA), medium physical activity (MPA), and vigorous physical activity (VPA) serve as input for the classification models. Subsequently, we re-verify the classifiers on the private MOX2-5 dataset. The performance of the ontology has been assessed with reasoning and SPARQL query execution time. Additionally, we have verified our ontology for effective recommendation generation. Results We have tested several standard AI algorithms and selected the best-performing model with optimized configuration for our use case by empirical testing. We have found that the autoregression model with the REM method outperforms the autoregression model without the REM method for both datasets. Gradient Boost (GB) classifier outperforms other classifiers with a mean accuracy score of 98.00%, and 99.00% for imbalanced PMData and MOX2-5 datasets, respectively, and 98.30%, and 99.80% for balanced PMData and MOX2-5 datasets, respectively. Hermit reasoner performs better than other ontology reasoners under defined settings. Our proposed algorithm shows a direction to combine the AI prediction forecasting results in an ontology to generate personalized activity recommendations in eCoaching. Conclusion The proposed method combining step-prediction, activity-level classification techniques, and personal preference information with semantic rules is an asset for generating personalized recommendations.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3