Data quality and associated factors in the health management information system at health centers in Shashogo district, Hadiya zone, southern Ethiopia, 2021

Author:

Getachew Nigusu,Erkalo Bereket,Garedew Muluneh Getachew

Abstract

Abstract Background Poor quality routine data contributes to poor decision-making, inefficient resource allocation, loss of confidence in the health system, and may threaten the validity of impact evaluations. For several reasons in most developing countries, the routine health information systems in those countries are described as ineffective. Hence, the aim of this study is to determine the quality of data and associated factors in the routine health management information system in health centers of Shashogo district, Hadiya Zone. Methods A facility-based cross-sectional study was conducted from June 1, 2021, to July 1, 2021, and 300 participants were involved in the study through simple random sampling. The data was collected with a self-administered questionnaire by trained data collectors. After checking its completeness, the data was entered into EPI data version 3.1 and exported to SPSS version 25 for statistical analysis. Finally, variables with p < 0.05 during multivariable analysis were considered significant variables. Result A total of 300(100%) participant were included in the interview and HMIS data quality was 83% in Shashogo district health centers. The data quality in terms of accuracy, completeness, and timeliness was 79%, 86%, and 84%, respectively. Conducting supportive supervision [AOR 3.5 (1.4, 8.9)], checking accuracy [AOR 1.3 (1.5, 3.5)], filling registrations [AOR 2.7 (1.44, 7.7)], and confidence level [AOR 1.9 (1.55, 3.35)] were all rated positively found to be factors associated with data quality. Conclusion The overall level of data quality in Shashogo district health centers was found to be below the national expectation level. All dimensions of data quality in the district were below 90% in data accuracy, content completeness, and timeliness of data. Conducting supportive supervision, checking accuracy, filling registrations and confidence level were found to be factors associated with data quality. Hence, all stakeholders should give all necessary support to improve data quality in routine health information systems to truly attain the goal of providing good quality data for the decision-making process by considering the identified factors.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Health Policy,Computer Science Applications

Reference32 articles.

1. Asress BM. Summary assessment scores of HIS in Ethiopia Sept 2011[9].Health Information Systems in Ethiopia.

2. Gimbel S, Mwanza M, Nisingizwe MP, Michel C, Hirschhorn L, Hingora A, et al. Improving data quality across 3 sub-Saharan African countries using the consolidated framework for implementation research (CFIR): Results from the African health initiative. BMC Health Serv Res. 2017;17(3):53–63.

3. Minstry of health federal Democratic Republic of Ethiopia, HMIS Information use GuideUSAID Health Systems 20/20: A health systems assessment approach: A how-to manual. Version 2. 2013;(May).

4. Directorate E (2018) Health data quality training module participant manual. (November).

5. Chen H, Hailey D, Wang N, Yu P. A Review of data quality assessment methods for public health information systems. Int J Environ Res Publ Health. 2014;11(5):5170–207.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3