DeepVAQ : an adaptive deep learning for prediction of vascular access quality in hemodialysis patients

Author:

Julkaew Sarayut,Wongsirichot Thakerng,Damkliang Kasikrit,Sangthawan Pornpen

Abstract

Abstract Background Chronic kidney disease is a prevalent global health issue, particularly in advanced stages requiring dialysis. Vascular access (VA) quality is crucial for the well-being of hemodialysis (HD) patients, ensuring optimal blood transfer through a dialyzer machine. The ultrasound dilution technique (UDT) is used as the gold standard for assessing VA quality; however, its limited availability due to high costs impedes its widespread adoption. We aimed to develop a novel deep learning model specifically designed to predict VA quality from Photoplethysmography (PPG) sensors. Methods Clinical data were retrospectively gathered from 398 HD patients, spanning from February 2021 to February 2022. The DeepVAQ model leverages a convolutional neural network (CNN) to process PPG sensor data, pinpointing specific frequencies and patterns that are indicative of VA quality. Meticulous training and fine-tuning were applied to ensure the model’s accuracy and reliability. Validation of the DeepVAQ model was carried out against established diagnostic standards using key performance metrics, including accuracy, specificity, precision, F-score, and area under the receiver operating characteristic curve (AUC). Result DeepVAQ demonstrated superior performance, achieving an accuracy of 0.9213 and a specificity of 0.9614. Its precision and F-score stood at 0.8762 and 0.8364, respectively, with an AUC of 0.8605. In contrast, traditional models like Decision Tree, Naive Bayes, and kNN demonstrated significantly lower performance across these metrics. This comparison underscores DeepVAQ's enhanced capability in accurately predicting VA quality compared to existing methodologies. Conclusion Exemplifying the potential of artificial intelligence in healthcare, particularly in the realm of deep learning, DeepVAQ represents a significant advancement in non-invasive diagnostics. Its precise multi-class classification ability for VA quality in hemodialysis patients holds substantial promise for improving patient outcomes, potentially leading to a reduction in mortality rates.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3