Best practice recommendations for the use of external telemetry devices on pinnipeds

Author:

Horning MarkusORCID,Andrews Russel D.,Bishop Amanda M.,Boveng Peter L.,Costa Daniel P.,Crocker Daniel E.,Haulena Martin,Hindell Mark,Hindle Allyson G.,Holser Rachel R.,Hooker Sascha K.,Hückstädt Luis A.,Johnson Shawn,Lea Mary-Anne,McDonald Birgitte I.,McMahon Clive R.,Robinson Patrick W.,Sattler Renae L.,Shuert Courtney R.,Steingass Sheanna M.,Thompson Dave,Tuomi Pamela A.,Williams Cassondra L.,Womble Jamie N.

Abstract

Abstract Pinnipeds spend large portions of their lives at sea, submerged, or hauled-out on land, often on remote off-shore islands. This fundamentally limits access by researchers to critical parts of pinniped life history and has spurred the development and implementation of a variety of externally attached telemetry devices (ETDs) to collect information about movement patterns, physiology and ecology of marine animals when they cannot be directly observed. ETDs are less invasive and easier to apply than implanted internal devices, making them more widely used. However, ETDs have limited retention times and their use may result in negative short- and long-term consequences including capture myopathy, impacts to energetics, behavior, and entanglement risk. We identify 15 best practice recommendations for the use of ETDs with pinnipeds that address experimental justification, animal capture, tag design, tag attachment, effects assessments, preparation, and reporting. Continued improvement of best practices is critical within the framework of the Three Rs (Reduction, Refinement, Replacement); these best practice recommendations provide current guidance to mitigate known potential negative outcomes for individuals and local populations. These recommendations were developed specifically for pinnipeds; however, they may also be applicable to studies of other marine taxa. We conclude with four desired future directions for the use of ETDs in technology development, validation studies, experimental designs and data sharing.

Funder

Alaska SeaLife Center

Durham University Doctoral Scholarship

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing

Reference126 articles.

1. Acquarone M, Born EW, Griffiths D, Knutsen LØ, Wiig Ø, Gjertz I. Evaluation of etorphine reversed by diprenorphine for the immobilisation of free-ranging Atlantic walrus (Odobenus rosmarus rosmarus L.). NAMMCO Sci Publ. 2014;9:16.

2. Adachi T, Maresh JL, Robinson PW, Peteron SH, Costa DP, Naito Y, Watanabe YY, Takahashi A. The foraging benefits of being fat in a highly migratory marine mammal. Proc R Soc B. 2017;281:20142120.

3. Andrews RD, Jones DR, Williams JD, Thorson PH, Oliver GW, Costa DP, Le Boeuf BJ. Heart rates of northern elephant seals diving at sea and resting on the beach. J Exp Biol. 1997;200:2083–95.

4. Andrews RD, Baird RW, Calambokidis J, Goertz CEC, Gulland FMD, Heide-Jørgensen MP, Hooker SK, Johnson M, Mate B, Mitani Y, Nowacek DP, Owen K, Quakenbush LT, Raverty S, Robbins J, Schorr GS, Shpak OV, Townsend FI Jr, Uhart M, Wells RS, Zerbini AN (2007) Best practice guidelines for cetacean tagging. J Cetacean Res Manag (in press).

5. Aoki K, Watanabe YY, Crocker DE, Robinson PW, Biuw M, Costa DP, Miyazaki N, Fedak MA, Miller PJ. Northern elephant seals adjust gliding and stroking patterns with changes in buoyancy: validation of at-sea metrics of body density. J Exp Biol. 2011;214:2973–87.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3