Best practice recommendations for the use of external telemetry devices on pinnipeds
-
Published:2019-10-04
Issue:1
Volume:7
Page:
-
ISSN:2050-3385
-
Container-title:Animal Biotelemetry
-
language:en
-
Short-container-title:Anim Biotelemetry
Author:
Horning MarkusORCID, Andrews Russel D., Bishop Amanda M., Boveng Peter L., Costa Daniel P., Crocker Daniel E., Haulena Martin, Hindell Mark, Hindle Allyson G., Holser Rachel R., Hooker Sascha K., Hückstädt Luis A., Johnson Shawn, Lea Mary-Anne, McDonald Birgitte I., McMahon Clive R., Robinson Patrick W., Sattler Renae L., Shuert Courtney R., Steingass Sheanna M., Thompson Dave, Tuomi Pamela A., Williams Cassondra L., Womble Jamie N.
Abstract
Abstract
Pinnipeds spend large portions of their lives at sea, submerged, or hauled-out on land, often on remote off-shore islands. This fundamentally limits access by researchers to critical parts of pinniped life history and has spurred the development and implementation of a variety of externally attached telemetry devices (ETDs) to collect information about movement patterns, physiology and ecology of marine animals when they cannot be directly observed. ETDs are less invasive and easier to apply than implanted internal devices, making them more widely used. However, ETDs have limited retention times and their use may result in negative short- and long-term consequences including capture myopathy, impacts to energetics, behavior, and entanglement risk. We identify 15 best practice recommendations for the use of ETDs with pinnipeds that address experimental justification, animal capture, tag design, tag attachment, effects assessments, preparation, and reporting. Continued improvement of best practices is critical within the framework of the Three Rs (Reduction, Refinement, Replacement); these best practice recommendations provide current guidance to mitigate known potential negative outcomes for individuals and local populations. These recommendations were developed specifically for pinnipeds; however, they may also be applicable to studies of other marine taxa. We conclude with four desired future directions for the use of ETDs in technology development, validation studies, experimental designs and data sharing.
Funder
Alaska SeaLife Center Durham University Doctoral Scholarship
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Instrumentation,Animal Science and Zoology,Signal Processing
Reference126 articles.
1. Acquarone M, Born EW, Griffiths D, Knutsen LØ, Wiig Ø, Gjertz I. Evaluation of etorphine reversed by diprenorphine for the immobilisation of free-ranging Atlantic walrus (Odobenus rosmarus rosmarus L.). NAMMCO Sci Publ. 2014;9:16. 2. Adachi T, Maresh JL, Robinson PW, Peteron SH, Costa DP, Naito Y, Watanabe YY, Takahashi A. The foraging benefits of being fat in a highly migratory marine mammal. Proc R Soc B. 2017;281:20142120. 3. Andrews RD, Jones DR, Williams JD, Thorson PH, Oliver GW, Costa DP, Le Boeuf BJ. Heart rates of northern elephant seals diving at sea and resting on the beach. J Exp Biol. 1997;200:2083–95. 4. Andrews RD, Baird RW, Calambokidis J, Goertz CEC, Gulland FMD, Heide-Jørgensen MP, Hooker SK, Johnson M, Mate B, Mitani Y, Nowacek DP, Owen K, Quakenbush LT, Raverty S, Robbins J, Schorr GS, Shpak OV, Townsend FI Jr, Uhart M, Wells RS, Zerbini AN (2007) Best practice guidelines for cetacean tagging. J Cetacean Res Manag (in press). 5. Aoki K, Watanabe YY, Crocker DE, Robinson PW, Biuw M, Costa DP, Miyazaki N, Fedak MA, Miller PJ. Northern elephant seals adjust gliding and stroking patterns with changes in buoyancy: validation of at-sea metrics of body density. J Exp Biol. 2011;214:2973–87.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|