Dysfunction and ceRNA network of the tumor suppressor miR-637 in cancer development and prognosis

Author:

Shen Jinze,Liang Chenhao,Su Xinming,Wang Qurui,Ke Yufei,Fang Jie,Zhang Dayong,Duan Shiwei

Abstract

AbstractMicroRNAs (miRNAs) are a class of small non-coding RNAs ranging from 17 to 25 nt in length. miR-637 is down-regulated in most cancers and up-regulated only in clear cell renal cell carcinoma (ccRCC). miR-637 can target 21 protein-coding genes, which are involved in the regulation of cell growth, cell cycle, cell proliferation, epithelial-mesenchymal transition (EMT), cancer cell invasion and metastasis, etc. In glioma, the transcription factor ZEB2 can bind to the miR-637 promoter region and inhibit miR-637 expression. Besides, miR-637 could be negatively regulated by competing endogenous RNA (ceRNAs) comprising 13 circular RNA (circRNAs) and 9 long non-coding RNA (lncRNAs). miR-637 is involved in regulating five signaling pathways, including the Jak/STAT3, Wnt/β-catenin, PI3K/AKT, and ERK signaling pathways. Low miR-637 expression was significantly associated with larger tumors and later tumor node metastasis (TNM) staging in cancer patients. Low miR-637 expression was also associated with poorer overall survival (OS) in cancer patients such as glioblastoma and low-grade gliomas (GBM/LGG), non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), and ovarian cancer (OV). Low expression of miR-637 increases the resistance of colorectal cancer (CRC) and human cholangiocarcinoma (CHOL) cancer cells to three anticancer chemotherapeutics (gemcitabine (dFdC), cisplatin (DDP), and oxaliplatin (OXA)). Our work summarizes the abnormal expression of miR-637 in various cancers, expounds on the ceRNA regulatory network and signaling pathway involved in miR-637, and summarizes the effect of its abnormal expression on the biological behavior of tumor cells. At the same time, the relationship between the expression levels of miR-637 and its related molecules and the prognosis and pathological characteristics of patients was further summarized. Finally, our work points out the insufficiency of miR-637 in current studies and is expected to provide potential clues for future miR-637-related studies.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3