Elevated ZNF704 expression is associated with poor prognosis of uveal melanoma and promotes cancer cell growth by regulating AKT/mTOR signaling

Author:

Luo Jingting,Li Haowen,Xiu Jingying,Zeng Jingyao,Feng Zhaoxun,Zhao Hanqing,Li Yang,Wei Wenbin

Abstract

Abstract Background Uveal melanoma (UM) is the most common intraocular malignancy in adults, with a poor survival prognosis. To date, limited understanding of UM’s molecular mechanisms constitutes an obstacle to developing effective therapy. In this study, we examined key regulators mediating UM progression and their clinical relevance. Methods Transcriptomics of UM patients and cells were analyzed via RNA sequencing and bioinformatic analysis. Zinc finger protein 704 (ZNF704) was identified as prognosis-related biomarker for UM based on clinical characteristics and RNA-seq data from The Cancer Genome Atlas (TCGA). Gene expression was knocked down by specific shRNAs/siRNAs and overexpressed by transfection with plasmids inserted with investigated gene cDNA. Cell proliferation, viability and invasion abilities were determined by CCK8, colony formation and transwell assays, respectively. For cell cycle and apoptosis, cells were PI or PI/Annexin V-APC stained and analyzed by flow cytometry. Standard immunoblotting and quantitative RT-PCR were employed to assess the mRNA and protein abundance. To determine tumor growth in vivo, 4-week-old BALB/c-nu immune-deficient nude mice were inoculated with tumor cells. Results Analysis of differential expressed genes (DEGs) and survival analysis identified ZNF704 as a novel biomarker of UM. Prognostic analysis indicated ZNF704 as an independent predictor of UM overall survival. Expression of ZNF704 is elevated in UM tissues relative to adjacent normal choroid tissues. Knockdown of ZNF704 suppressed the growth and migration of UM cells and vice versa. In addition, expression of ZNF704 arrest UM cells at G0/G1 phase and inhibit cell apoptosis. RNA sequencing analysis indicated that SORBS3 were dysregulated after ZNF704 downregulation. Gene Set Enrichment Analysis (GSEA) revealed that upon ZNF704 knowndown, genes related with PI3K/AKT/mTOR, EMT and metastasis are enriched. Mechanistically, ZNF704 activates AKT/mTOR/glycolysis signaling pathway in UM cells. Moreover, expression of SORBS3 is downregulated by ZNF704 and knockdown of SORBS3 restored tumor cell viability in ZNF704 silenced cells. Conclusions ZNF704 predicts poor prognosis of UM and exhibit pro-oncogenic effect in UM progression in vivo and in vitro, mediated through AKT/mTOR signaling pathway and suppression of SORBS3 expression.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3