Long noncoding RNA HOXC-AS3 interacts with CDK2 to promote proliferation in hepatocellular carcinoma

Author:

Su Chen,Wang Weijian,Mo Jie,Liu Furong,Zhang Hongwei,Liu Yachong,Chen Xiaoping,Liao Zhibin,Zhang Bixiang,Zhu Peng

Abstract

Abstract Background Hepatocellular carcinoma (HCC) is a type of cancer that affects the liver and has a high mortality rate. Long non-coding RNAs (lncRNAs) dysregulation can contribute to cancer occurrence and progression, although the underlying molecular pathways are mostly unclear. HOXC-AS3 was found to be considerably overexpressed in HCC in this investigation. The goal of this work was to look into the involvement of HOXC-AS3 in HCC and the various molecular pathways that underpin it. Methods Normal liver and paired HCC tissues from HCC patients were used to evaluate HOXC-AS3 expression by qRT-PCR. The role of HOXC-AS3 in HCC was assessed both in vitro and in vivo. RNA pulldown, RIP and co-IP were used to demonstrate the potential mechanism by which HOXC-AS3 regulates the progression of HCC. Results Using qRT-PCR, it was discovered that HOXC-AS3 was substantially expressed in HCC. In vitro and in vivo, overexpression of HOXC-AS3 aided proliferation and cell cycle progression. HOXC-AS3 interacted with CDK2 to facilitate CDK2’s decreased binding to p21, resulting in enhanced CDK2 activity, which promoted the phosphorylation of Rb and the progression of HCC. Conclusions HOXC-AS3 is highly expressed in HCC and can promote the progression of HCC by interacting with CDK2. Therefore, targeting HOXC-AS3 is very likely to provide a new strategy for the treatment of HCC and for improving patient prognosis.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3