S100A8/A9 as a risk factor for breast cancer negatively regulated by DACH1

Author:

Zhang Xiaojun,Niu Mengke,Li Tianye,Wu Yuze,Gao Jinnan,Yi Ming,Wu Kongming

Abstract

Abstract Background S100A8 and S100A9 are members of Ca2+-binding EF-hand superfamily, mainly expressed by macrophages and neutrophils. Limited by the poor stability of homodimers, they commonly exist as heterodimers. Beyond acting as antibacterial cytokines, S100A8/A9 is also associated with metabolic and autoimmune diseases such as obesity, diabetes, and rheumatoid arthritis. While the involvement of S100A8/A9 in breast cancer development has been documented, its prognostic significance and the precise regulatory mechanisms remain unclear. Methods S100A8/A9 protein in breast cancer samples was evaluated by immunohistochemistry staining with tumor tissue microarrays. The serum S100A8 concentration in patients was measured by enzyme-linked immunosorbent assay (ELISA). The S100A8 secreted by breast cancer cells was detected by ELISA as well. Pooled analyses were conducted to explore the relationships between S100A8/A9 mRNA level and clinicopathological features of breast cancer patients. Besides, the effects of S100A8/A9 and DACH1 on patient outcomes were analyzed by tissue assays. Finally, xenograft tumor assays were adopted to validate the effects of DACH1 on tumor growth and S100A8/A9 expression. Results The level of S100A8/A9 was higher in breast cancer, relative to normal tissue. Increased S100A8/A9 was related to poor differentiation grade, loss of hormone receptors, and Her2 positive. Moreover, elevated S100A8/A9 predicted a worse prognosis for breast cancer patients. Meanwhile, serum S100A8 concentration was upregulated in Grade 3, basal-like, and Her2-overexpressed subtypes. Additionally, the results of public databases showed S100A8/A9 mRNA level was negatively correlated to DACH1. Stable overexpressing DACH1 in breast cancer cells significantly decreased the generation of S100A8. The survival analysis demonstrated that patients with high S100A8/A9 and low DACH1 achieved the shortest overall survival. The xenograft models indicated that DACH1 expression significantly retarded tumor growth and downregulated S100A8/A9 protein abundance. Conclusion S100A8/A9 is remarkedly increased in basal-like and Her2-overexpressed subtypes, predicting poor prognosis of breast cancer patients. Tumor suppressor DACH1 inhibits S100A8/A9 expression. The combination of S100A8/A9 and DACH1 predicted the overall survival of breast cancer patients more preciously.

Funder

Shanxi Province 136 Revitalization Medical Project Construction Funds

Shanxi Provincial Basic Research Program

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3