Milk thistle nano-micelle formulation promotes cell cycle arrest and apoptosis in hepatocellular carcinoma cells through modulating miR-155-3p /SOCS2 /PHLDA1 signaling axis

Author:

Rahnama Saghar,Tehrankhah Zahra Moazezi,Mohajerani Fatemeh,Mohammadi Faezeh Shah,Yeganeh Zahra Yousefi,Najafi Farhood,Babashah Sadegh,Sadeghizadeh Majid

Abstract

Abstract Background Hepatocellular Carcinoma (HCC) is a prevalent form of liver cancer that causes significant mortality in numerous individuals worldwide. This study compared the effects of milk thistle (MT) and nano-milk thistle (N-MT) on the expression of the genes that participate in apoptosis and cell cycle pathways in Huh-7 and HepG2 cells. Methods IC50 values of MT and N-MT were determined using the MTT assay. Huh-7 and HepG2 cell lines (containing mutant and wild-type TP53 gene, respectively) were incubated with MT and N-MT for 24h and 48h and the impact of MT and N-MT on the proliferation of these cell lines was evaluated through a comparative analysis. Cell cycle and apoptosis were assessed by flow cytometry after 24h and 48h treatment in the cell lines mentioned. Real-time PCR was used to analyze miR-155-3p, PHLDA1, SOCS2, TP53, P21, BAX, and BCL-2 expression in the cell lines that were being treated. Results N-MT reduces cancer cell growth in a time and concentration-dependent manner, which is more toxic compared to MT. Huh-7 was observed to have IC50 values of 2.35 and 1.7 μg/ml at 24h and 48h, and HepG2 was observed to have IC50 values of 3.4 and 2.6 μg/ml at 24 and 48h, respectively. N-MT arrested Huh-7 and HepG2 cells in the Sub-G1 phase and induced apoptosis. N-MT led to a marked reduction in the expression of miR-155-3p and BCL-2 after 24h and 48h treatments. Conversely, PHLDA1, SOCS2, BAX, and P21 were upregulated in the treated cells compared to untreated cells, which suggests that milk thistle has the potential to regulate these genes. N-MT reduced the expression of TP53 in Huh-7 cells after mentioned time points, while there was a significant increase in the expression of the TP53 gene in HepG2 cells. No gene expression changes were observed in MT-treated cells after 24h and 48h. Conclusion N-MT can regulate cancer cell death by arresting cell cycle and inducing apoptosis. This occurs through the alteration of apoptotic genes expression. A reduction in the expression of miR-155-3p and increase in the expression of SOCS2 and PHLDA1 after N-MT treatment showed the correlation between miR-155-3p and PHLDA1/SOCS2 found in bioinformatics analysis. While N-MT increased TP53 expression in HepG2, reduced it in Huh-7. The findings indicate that N-MT can function intelligently in cancer cells and can be a helpful complement to cancer treatment.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanoinformatics and nanotechnology in anti-inflammatory therapy: A review;Journal of Drug Delivery Science and Technology;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3