Mechanisms predictive of Tibetan Medicine Sophora moorcroftiana alkaloids for treatment of lung cancer based on the network pharmacology and molecular docking

Author:

Ji Peng,Zhao Nian-Shou,Wu Fan-Lin,Wei Yan-Ming,Laba Ci-Dan,Wujin Cuo-Mu,Hua Yong-Li,Yuan Zi-Wen,Yao Wan-Ling

Abstract

Abstract Background Leguminous Sophora moorcroftiana (SM) is a genuine medicinal material in Tibet. Many research results have reveal the Sophora moorcroftiana alkaloids (SMA), as the main active substance, have a wide range of effects, such as antibacterial, antitumor and antiparasitic effects. However, there are few reports on the inhibition of lung cancer (LC) and its inhibitory mechanism, and the pharmacological mechanism of SMA is still unclear, Therefore, exploring its mechanism of action is of great significance. Methods The SMA active components were obtained from the literature database. Whereas the corresponding targets were screened from the PubChem and PharmMapper database, UniProt database were conducted the correction and transformation of UniProt ID on the obtained targets. The GeneCards and OMIM databases identified targets associated with LC. Venny tools obtained the intersection targets of SMA and LC. R language and Cytoscape software constructed the visual of SMA - intersection targets – LC disease network. The intersection targets protein-protein interaction (PPI) network were built by the STRING database. The functions and pathways of the common targets of SMA and LC were enriched by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, molecular docking And A549 cells vitro experiment were performed to further validate our finding. Results We obtained six kinds of alkaloids in SM, 635 potential targets for these compounds, and 1,303 genes related to LC. SMA and LC intersection targets was 33, including ALB, CCND1, ESR1, NOTCH1 and AR. GO enrichment indicated that biological process of SMA was mainly involved in the positive regulation of transcription and nitric oxide biosynthetic process, and DNA-templated, etc. Biological functions were mainly involved in transcription factor binding and enzyme binding, etc. Cell components were mainly involved in protein complexes, extracellular exosome, cytoplasm and nuclear chromatin, etc., Which may be associated with its anti-LC effects. KEGG enrichment analysis showed that main pathways involved in the anti-LC effects of SMA, including pathway in cancer, non small-cell lung cancer, p53, PI3K-Akt and FOXO signaling pathways. Molecular docking analyses revealed that the six active compounds had a good binding activity with the main therapeutic targets 2W96, 2CCH and 1O96. Experiments in vitro proved that SMA inhibited the proliferation of LC A549 cells. Conclusions Results of the present study, we have successfully revealed the SMA compounds had a multi-target and multi-channel regulatory mechanism in treatment LC, These findings provided a solid theoretical reference of SMA in the clinical treatment of LC.

Funder

National Natural Science Foundation of China

Key R&D Projects of Ningxia Science and Technology Department

Fuxi talent project of Gansu Agricultural University

Science and technology program of Tibet Autonomous Region

industry support project of colleges and universities in Gansu province

National beef/yak industrial technology system

discipline construction special fund project of Gansu Agricultural University

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

Reference45 articles.

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

2. Liao JH, Qian HS, Li XQ, et al. Clinicopathological characteristics and prognosis of 109 patients with lung cancer aged 40 years or less. Chin J Cancer Preve Treat. 2019;26:1096–100.

3. Du HZ, Hou XY, Miao YH, et al. Traditional Chinese medicine: an effective treatment for 2019 novel coronavirus pneumonia (NCP). Chin J Nat Med. 2020;18:206–10.

4. Liu X, Wang X. Recent advances on the structural modification of parthenolide and its derivatives as anticancer agents. Chin J Nat Med. 2022;20:814–29.

5. Ji YJ. Clinical effect of integrated traditional Chinese and western medicine on advanced non-small cell lung cancer. Chin & Foreign Medic Treatment. 2019;38:47–9.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3