Identification of novel AKT1 inhibitors from Sapria himalayana bioactive compounds using structure-based virtual screening and molecular dynamics simulations

Author:

Ralte Laldinfeli,Sailo Hmingremhlua,Kumar Rakesh,Khiangte Laldinliana,Kumar Nachimuthu Senthil,Singh Yengkhom Tunginba

Abstract

AbstractThrough the experimental and computational analyses, the present study sought to elucidate the chemical composition and anticancer potential of Sapria himalayana plant extract (SHPE). An in vitro analysis of the plant extract was carried out to determine the anticancer potential. Further, network pharmacology, molecular docking, and molecular dynamic simulation were employed to evaluate the potential phytochemical compounds for cervical cancer (CC) drug formulations. The SHPE exhibited anti-cancerous potential through inhibition properties against cancer cell lines. The LC-MS profiling showed the presence of 14 compounds in SHPE. Using network pharmacology analysis, AKT1 (AKT serine/threonine kinase 1) is identified as the possible potential target, and EGFR (Epidermal Growth Factor Receptor) is identified as the possible key signal pathway. The major targets were determined to be AKT1, EGFR by topological analysis and molecular docking. An in silico interaction of phytoconstituents employing molecular docking demonstrated a high binding inclination of ergoloid mesylate and Ergosta-5,7,9(11),22-tetraen-3-ol, (3.beta.,22E)- with binding affinities of -15.5 kcal/mol, and -11.3 kcal/mol respectively. Further, MD simulation and PCA analyses showed that the phytochemicals possessed significant binding efficacy with CC protein. These results point the way for more investigation into SHPE compound’s potential as CC treatment. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Binding patterns of inhibitors to different pockets of kinesin Eg5;Archives of Biochemistry and Biophysics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3