A systems pharmacology approach based on oncogenic signalling pathways to determine the mechanisms of action of natural products in breast cancer from transcriptome data

Author:

Odongo Regan,Demiroglu-Zergeroglu Asuman,Çakır TunahanORCID

Abstract

Abstract Background Narrow spectrum of action through limited molecular targets and unforeseen drug-related toxicities have been the main reasons for drug failures at the phase I clinical trials in complex diseases. Most plant-derived compounds with medicinal values possess poly-pharmacologic properties with overall good tolerability, and, thus, are appropriate in the management of complex diseases, especially cancers. However, methodological limitations impede attempts to catalogue targeted processes and infer systemic mechanisms of action. While most of the current understanding of these compounds is based on reductive methods, it is increasingly becoming clear that holistic techniques, leveraging current improvements in omic data collection and bioinformatics methods, are better suited for elucidating their systemic effects. Thus, we developed and implemented an integrative systems biology pipeline to study these compounds and reveal their mechanism of actions on breast cancer cell lines. Methods Transcriptome data from compound-treated breast cancer cell lines, representing triple negative (TN), luminal A (ER+) and HER2+ tumour types, were mapped on human protein interactome to construct targeted subnetworks. The subnetworks were analysed for enriched oncogenic signalling pathways. Pathway redundancy was reduced by constructing pathway-pathway interaction networks, and the sets of overlapping genes were subsequently used to infer pathway crosstalk. The resulting filtered pathways were mapped on oncogenesis processes to evaluate their anti-carcinogenic effectiveness, and thus putative mechanisms of action. Results The signalling pathways regulated by Actein, Withaferin A, Indole-3-Carbinol and Compound Kushen, which are extensively researched compounds, were shown to be projected on a set of oncogenesis processes at the transcriptomic level in different breast cancer subtypes. The enrichment of well-known tumour driving genes indicate that these compounds indirectly dysregulate cancer driving pathways in the subnetworks. Conclusion The proposed framework infers the mechanisms of action of potential drug candidates from their enriched protein interaction subnetworks and oncogenic signalling pathways. It also provides a systematic approach for evaluating such compounds in polygenic complex diseases. In addition, the plant-based compounds used here show poly-pharmacologic mechanism of action by targeting subnetworks enriched with cancer driving genes. This network perspective supports the need for a systemic drug-target evaluation for lead compounds prior to efficacy experiments.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3