The potential effects and mechanisms of hispidulin in the treatment of diabetic retinopathy based on network pharmacology

Author:

Chen Yao,Sun Jiaojiao,Zhang Zhiyun,Liu Xiaotong,Wang Qiaozhi,Yu Yang

Abstract

Abstract Background Diabetic retinopathy (DR), one of the most common and severe microvascular complication of diabetes mellitus (DM), is mainly caused by diabetic metabolic disorder. So far, there is no effective treatment for DR. Eriocauli Flos, a traditional Chinese herb, has been used in treating the ophthalmic diseases including DR. However, the active ingredients and molecular mechanisms of Eriocauli Flos to treat diabetic retinopathy remain elusive. Methods Here, the systems pharmacology model was developed via constructing network approach. 8 active components which were screened by oral bioavailability (OB ≥ 30%) and drug-likeness (DL ≥ 0.18) and 154 targets were selected from Eriocauli Flos through TCMSP database. Another 3593 targets related to DR were obtained from Genecards, OMIM, TTD, and Drugbank databases. The 103 intersecting targets of DR and Eriocauli Flos were obtained by Draw Venn Diagram. In addition, protein-protein interaction network was established from STRING database and the compound-target network was constructed by Cytoscape which screened top 12 core targets with cytoNCA module. Then the overlapping targets were analyzed by GO and KEGG enrichment. Moreover, two core targets were selected to perform molecular docking simulation. Subsequently, CCK8 assay, RT-PCR and Western blotting were applied to further reveal the mechanism of new candidate active component from Eriocauli Flos in high glucose-induced HRECs. Results The results showed that the overlapping targets by GO analysis were enriched in cellular response to chemical stress, response to oxidative stress, response to reactive oxygen species, reactive oxygen species metabolic process and so on. Besides, the overlapping targets principally regulated pathways such as AGE-RAGE signaling pathway in diabetic complications, lipid atherosclerosis, fluid shear stress and atherosclerosis, and PI3K-Akt signaling pathway. Molecular docking exhibited that VEGFA and TNF-α, had good bindings to the great majority of compounds, especially the compound hispidulin. In vitro, hispidulin ameliorated high-glucose induced proliferation by down-regulating the expression of p-ERK, p-Akt, and VEGFA; meanwhile inhibited the mRNA levels of TNF-α. Conclusions In this study, through network pharmacology analysis and experimental validation, we found that hispidulin maybe has a potential targeted therapy effect for DR by decreasing the expression of p-Akt, p-ERK, and VEGFA, which resulted in ameliorating the proliferation in HRECs.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3