Exploring the total flavones of Abelmoschus manihot against IAV-induced lung inflammation by network pharmacology

Author:

Gao Yanan,Liang Zihao,Lv Nianyin,Shan Jinjun,Zhou Huihui,Zhang Junfeng,Shi Liyun

Abstract

Abstract Background Abelmoschus manihot (L.) Medicus (AM) is a medicinal plant with various biological activities, including anti-inflammatory, antioxidant, antiviral and immunomodulatory. Previous studies have identified total flavones as the primary bioactive ingredient of AM (termed TFA). However, its role and mechanism in counteracting Influenza A virus (IAV) infection are yet to be explored. Therefore, the study aims to study the antiviral and anti-inflammatory effects of TFA on IAV in vitro and in vivo. Methods A network pharmacology-based approach was applied to identify the antiviral mechanism of TFA against IAV. For the mechanism validation, the cytopathic effect reduction assay evaluated the antiviral activity of TFA in vitro. Meanwhile, the mice were intranasally infected with IAV to induce lung infection. The antiviral effect of TFA was observed in vivo. Further investigation whether the reprogramming microbiome in the TFA treatment group affected antiviral, we conducted a microbial-transfer study with co-housing experiments. Results By applying the network pharmacology-based methods (PPI, GO, and KEGG), we identified 167 potential targets of TFA action, among which 62 targets were related to IAV pathogenesis. A core network containing the pro-inflammatory TNFα, IL-6, IL-1β, MAPKs, and RIG-I receptor signaling pathway was further confirmed as the crucial targets for anti-influenza efficacy of TFA. We demonstrate that TFA provided profound protection against pulmonary IAV infection, which alleviated inflammatory responses, decreased MAPK signaling pathway and expedited viral eradiation. Conclusions Our study unveils a pivotal role for TFA in controlling viral infection and dampening pathology, making it a promising strategy for treating IAV-induced pneumonia.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3