Machine learning classification of polycystic ovary syndrome based on radial pulse wave analysis

Author:

Lim Jiekee,Li Jieyun,Feng Xiao,Feng Lu,Xia Yumo,Xiao Xinang,Wang Yiqin,Xu Zhaoxia

Abstract

Abstract Background Patients with Polycystic ovary syndrome (PCOS) experienced endocrine disorders that may present vascular function changes. This study aimed to classify and predict PCOS by radial pulse wave parameters using machine learning (ML) methods and to provide evidence for objectifying pulse diagnosis in traditional Chinese medicine (TCM). Methods A case-control study with 459 subjects divided into a PCOS group and a healthy (non-PCOS) group. The pulse wave parameters were measured and analyzed between the two groups. Seven supervised ML classification models were applied, including K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Trees, Random Forest, Logistic Regression, Voting, and Long Short Term Memory networks (LSTM). Parameters that were significantly different were selected as input features and stratified k-fold cross-validations training was applied to the models. Results There were 316 subjects in the PCOS group and 143 subjects in the healthy group. Compared to the healthy group, the pulse wave parameters h3/h1 and w/t from both left and right sides were increased while h4, t4, t, As, h4/h1 from both sides and right t1 were decreased in the PCOS group (P < 0.01). Among the ML models evaluated, both the Voting and LSTM with ensemble learning capabilities, demonstrated competitive performance. These models achieved the highest results across all evaluation metrics. Specifically, they both attained a testing accuracy of 72.174% and an F1 score of 0.818, their respective AUC values were 0.715 for the Voting and 0.722 for the LSTM. Conclusion Radial pulse wave signal could identify most PCOS patients accurately (with a good F1 score) and is valuable for early detection and monitoring of PCOS with acceptable overall accuracy. This technique can stimulate the development of individualized PCOS risk assessment using mobile detection technology, furthermore, gives physicians an intuitive understanding of the objective pulse diagnosis of TCM. Trial registration Not applicable.

Funder

Shanghai Key Laboratory of Health Identification and Assessment

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3