Effect of Oroxylum indicum on hepatocellular carcinoma via the P53 and VEGF pathways based on microfluidic chips

Author:

Luo Xi,Zhao Miao,Liu Sicong,Zheng Yi,Zhang Qiang,Bao Yong-rui,Wang Shuai,Li Tian-jiao,Meng Xian-sheng

Abstract

Abstract Background Hepatocellular carcinoma (HCC), abbreviated as liver cancer, is one of the most common cancers in clinics. HCC has a wider spread and higher incidence due to its high malignancy and metastasis. In HCC, effective strategies to block cancer cell migration, invasion, and neovascularization need to be further studied. Consumption of flavonoid-rich Oroxylum indicum (OI) has been associated with multiple beneficial effects, including anti-inflammatory and anticancer properties, but the potential effects on HCC have not been thoroughly investigated. Objective In this study, we aimed to reveal the effect of OI on HCC and its potential mechanism through microfluidic technology. Methods We designed microfluidic chips for cell migration, invasion, and neovascularization to evaluate the effect of OI on HepG2 cells. To further explore the mechanism of its anti-liver cancer action, the relevant signaling pathways were studied by microfluidic chips, RT‒qPCR and immunofluorescence techniques. Compared to the control group, cell migration, invasion, and angiogenesis were significantly reduced in each administration group. According to the P53 and VEGF pathways predicted by network pharmacology, RT‒qPCR and immunofluorescence staining experiments were conducted. Results The results showed that OI upregulated the expression of Bax, P53 and Caspase-3 and downregulated the expression of Bcl-2 and MDM2. It has been speculated that OI may directly or indirectly induce apoptosis of HepG2 cells by regulating apoptosis-related genes. OI blocks the VEGF signaling pathway by downregulating the expression levels of VEGF, HIF-1α and EGFR and inhibits the migration and invasion of HepG2 cells and the formation of new blood vessels. Conclusion Our findings suggest that OI may inhibit the migration, invasion, and neovascularization of HepG2 cells, and its regulatory mechanism may be related to the regulation of the P53 and VEGF pathways.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3