Protein hydrolysate from potato confers hepatic-protection in hamsters against high fat diet induced apoptosis and fibrosis by suppressing Caspase-3 and MMP2/9 and by enhancing Akt-survival pathway

Author:

Asokan Shibu Marthandam,Hung Tsu-Han,Li Zong-Yan,Chiang Wen-Dee,Lin Wan-TengORCID

Abstract

Abstract Background A potato protein hydrolysate, APPH is a potential anti-obesity diet ingredient. Since, obesity leads to deterioration of liver function and associated liver diseases, in this study the effect of APPH on high fat diet (HFD) associated liver damages was investigated. Methods Six week old male hamsters were randomly separated to six groups (n = 8) as control, HFD (HFD fed obese), L-APPH (HFD + 15 mg/kg/day of APPH), M-APPH (HFD + 30 mg/kg/day), H-APPH (HFD + 75 mg/kg/day of APPH) and PB (HFD + 500 mg/kg/day of probucol). HFD fed hamsters were administered with APPH 50 days through oral gavage. The animals were euthanized and the number of apoptotic nuclei in liver tissue was determined by TUNEL staining and the extent of interstitial fibrosis was determined by Masson’s trichrome staining. Modulation in the molecular events associated with apoptosis and fibrosis were elucidated from the western blotting analysis of the total protein extracts. Results Hamsters fed with high fat diet showed symptoms of liver damage as measured from serum markers like alanine aminotransferase and aspartate aminotransferase levels. However a 50 day long supplementation of APPH effectively ameliorated the effects of HFD. HFD also modulated the expression of survival and apoptosis proteins in the hamster liver. Further the HFD groups showed elevated levels of fibrosis markers in liver. The increase in fibrosis and apoptosis was correlated with the increase in the levels of phosphorylated extracellular signal-regulated kinases (pERK1/2) revealing a potential role of ERK in the HFD mediated liver damage. However APPH treatment reduced the effect of HFD on the apoptosis and fibrosis markers considerably and provided hepato-protection. Conclusion APPH can therefore be considered as an efficient therapeutic agent to ameliorate high fat diet related liver damages.

Funder

Tunghai University for Global Research and Education on Environment and Society

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3