Abelmoschus esculentus subfractions attenuate Aβ and tau by regulating DPP-4 and insulin resistance signals

Author:

Huang Chien-Ning,Wang Chau-Jong,Lin Chih-Li,Li Hsin-Hua,Yen An-Ting,Peng Chiung-HueiORCID

Abstract

Abstract Background Insulin resistance could be associated with the development of Alzheimer disease (AD). The neuropathological hallmarks of AD are beta amyloid (Aβ) produced from sequential cleavage initiated by β-secretase and degraded by insulin degradation enzyme (IDE), as well as hyperphosphorylation of tau (p-tau). Insulin action involves the cascades of insulin receptor substrates (IRS) and phosphatidylinositol 3-kinase (PI3K), while phosphorylation of IRS-1 at ser307 (p-ser307IRS-1) hinders the response. Our previous report suggested dipeptidyl peptidase-4 (DPP-4) is crucial to insulin resistance, and the subfractions of Abelmoschus esculentus (AE), F1 and F2, attenuate the signaling. Here we aim to investigate whether AE works to reduce Aβ generation via regulating DPP4 and insulin resistance. Methods The subfractions F1 and F2 were prepared according to a succession of procedures. F1 was composed by quercetin glycosides and triterpene ester, and F2 contained a large amount of polysaccharides. The in vitro insulin resistance model was established by SK-N-MC cell line treated with palmitate. MTT was used to define the dose range, and thereby Western blot, ELISA, and the activity assay were used to detect the putative markers. One-way ANOVA was performed for the statistical analysis. Results Treatment of palmitate induced the level of p-ser307IRS-1. Both F1 and F2 effectively decrease p-ser307IRS-1, and recover the expression of p-PI3K. However, the expression of total IRS plunged with 25 μg/mL of F1, while descended steadily with 5 μg/mL of F2. As palmitate increased the levels of Aβ40 and Aβ42, both AE subfractions were effective to reduce Aβ generation of and β-secretase activity, but IDE was not altered in any treatment conditions. The expression of DPP4 was also accompanied with insulin resistance signals. Inhibition of DPP4 attenuated the activity of β-secretase and production of Aβ. Moreover, the present data revealed that both AE subfractions significantly decrease the level of p-Tau. Conclusions In conclusion, we demonstrated that AE would be a potential adjuvant to prevent insulin resistance and the associated pathogenesis of AD, and F2 seems more feasible to be developed.

Funder

Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3