Effects of melatonin on rumen microorganisms and methane production in dairy cow: results from in vitro and in vivo studies

Author:

Fu Yao,Yao Songyang,Wang Tiankun,Lu Yongqiang,Han Huigang,Liu Xuening,Lv Dongying,Ma Xiao,Guan Shengyu,Yao Yujun,Liu Yunjie,Yu Haiying,Li Shengli,Yang Ning,Liu Guoshi

Abstract

Abstract Background Methane (CH4) is a major greenhouse gas, and ruminants are one of the sources of CH4 which is produced by the rumen microbiota. Modification of the rumen microbiota compositions will impact the CH4 production. In this study, the effects of melatonin on methane production in cows were investigated both in the in vitro and in vivo studies. Results Melatonin treatment significantly reduced methane production in both studies. The cows treated with melatonin reduced methane emission from their respiration by approximately 50%. The potential mechanisms are multiple. First, melatonin lowers the volatile fatty acids (VFAs) production in rumen and reduces the raw material for CH4 synthesis. Second, melatonin not only reduces the abundance of Methanobacterium which are responsible for generating methane but also inhibits the populations of protozoa to break the symbiotic relationship between Methanobacterium and protozoa in rumen to further lowers the CH4 production. The reduced VFA production is not associated with food intake, and it seems also not to jeopardize the nutritional status of the cows. This was reflected by the increased milk lipid and protein contents in melatonin treated compared to the control cows. It is likely that the energy used to synthesize methane is saved to compensate the reduced VFA production. Conclusion This study enlightens the potential mechanisms by which melatonin reduces rumen methane production in dairy cows. Considering the greenhouse effects of methane on global warming, these findings provide valuable information using different approaches to achieve low carbon dairy farming to reduce the methane emission.

Funder

The 67th general grant of China Postdoctoral Science Foundation

Beijing Innovation Consortium of Livestock Research System

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3