Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection

Author:

He Zhiyuan,Ma Yulin,Yang Sirui,Zhang Shuyuan,Liu Shuai,Xiao Jianxin,Wang Yajing,Wang Wei,Yang Hongjian,Li Shengli,Cao Zhijun

Abstract

Abstract Background Antimicrobials are often used to prevent and treat diarrhea induced by enteroaggregative Escherichia coli (EAEC) in young ruminants. However, drug overuse or misuse accelerates the spread of multidrug-resistant extended-spectrum β-lactamase (ESBL)-producing E. coli. Thus, supplementary foods as alternatives to antibiotics are needed to prevent colibacillus diarrhea in neonatal dairy calves. Ursodeoxycholic acid (UDCA), a therapeutic bile acid, helps alleviate colitis. However, how UDCA helps alleviate ESBL-EAEC-induced clinical symptoms and colitis remains unclear. Results We investigated the microbial profiles and metabolites of healthy and diarrheic neonatal calves to determine microbial and metabolite biomarkers in early-life development. Both the gut microbiota communities and their associated metabolites differed between healthy and diarrheic calves. Commensal Butyricicoccus, Faecalibacterium, Ruminococcus, Collinsella, and Coriobacterium were key microbial markers that distinguished healthy and diarrheic gut microbiomes. Random forest machine-learning algorithm and Spearman correlation results indicated that enriched UDCA, short-chain fatty acids (SCFAs), and other prebiotics were strongly positively correlated with these five bacterial genera. We explored the effect of ursodiol on bacterial growth, cell adherence, and lipopolysaccharide-treated Caco-2 cells. Adding ursodiol induced direct antibacterial effects, suppressed proinflammatory effects, and reduced cell integrity damage. Oral ursodiol delivery to neonatal mice exhibited significant antibacterial effects and helped maintain colonic barrier integrity in mouse models of peritonitis sepsis and oral infection. UDCA supplementation attenuated colitis and recovered colonic SCFA production. To validate this, we performed fecal microbiota transplantations to inoculate ESBL-EAEC-infected neonatal mice. Microbiotas from UDCA-treated neonatal mice ameliorated colitis and hindgut commensal bacterial damage compared with that of the microbiotas from the control and placebo mice, as evidenced by colonization of abundant bacteria, including Oscillospiraceae, Ruminococcaceae, Lachnospiraceae, and Clostridia_UCG-014, and upregulated SCFA production. Conclusions This study provided the first evidence that UDCA could confer diarrhea resistance in ESBL-EAEC-infected newborn dairy calves. UDCA blocked bacterial growth and invasion both in vitro and in vivo, alleviated commensal bacterial dysbiosis during ESBL-EAEC infection in neonatal mouse models of sepsis and colitis via the TGR5-NF-κB axis, and upregulated SCFA production in the hindgut digesta. Our findings provide insight into the UDCA-mediated remission of ESBL-EAEC infections and the potential role of UDCA as an antibiotic alternative.

Funder

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3