Modeling the blood–brain barrier using stem cell sources

Author:

Lippmann Ethan S,Al-Ahmad Abraham,Palecek Sean P,Shusta Eric V

Abstract

Abstract The blood–brain barrier (BBB) is a selective endothelial interface that controls trafficking between the bloodstream and brain interstitial space. During development, the BBB arises as a result of complex multicellular interactions between immature endothelial cells and neural progenitors, neurons, radial glia, and pericytes. As the brain develops, astrocytes and pericytes further contribute to BBB induction and maintenance of the BBB phenotype. Because BBB development, maintenance, and disease states are difficult and time-consuming to study in vivo, researchers often utilize in vitro models for simplified analyses and higher throughput. The in vitro format also provides a platform for screening brain-penetrating therapeutics. However, BBB models derived from adult tissue, especially human sources, have been hampered by limited cell availability and model fidelity. Furthermore, BBB endothelium is very difficult if not impossible to isolate from embryonic animal or human brain, restricting capabilities to model BBB development in vitro. In an effort to address some of these shortcomings, advances in stem cell research have recently been leveraged for improving our understanding of BBB development and function. Stem cells, which are defined by their capacity to expand by self-renewal, can be coaxed to form various somatic cell types and could in principle be very attractive for BBB modeling applications. In this review, we will describe how neural progenitor cells (NPCs), the in vitro precursors to neurons, astrocytes, and oligodendrocytes, can be used to study BBB induction. Next, we will detail how these same NPCs can be differentiated to more mature populations of neurons and astrocytes and profile their use in co-culture modeling of the adult BBB. Finally, we will describe our recent efforts in differentiating human pluripotent stem cells (hPSCs) to endothelial cells with robust BBB characteristics and detail how these cells could ultimately be used to study BBB development and maintenance, to model neurological disease, and to screen neuropharmaceuticals.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Developmental Neuroscience,Neurology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3