Activation of SNAT1/SLC38A1 in human breast cancer: correlation with p-Akt overexpression

Author:

Wang Kuo,Cao Fang,Fang Wenzheng,Hu Yongwei,Chen Ying,Ding Houzhong,Yu Guanzhen

Abstract

Abstract Background SNAT1 is a subtype of the amino acid transport system A that has been implicated to play a potential role in cancer development and progression, yet its role in breast cancer remains unclear. In present study, we detected SNAT1 expression in breast cancers and explored its underlying mechanism in promoting breast carcinogenesis. Methods RT-PCR and Western blotting were performed to analyze the transcription and protein levels of SNAT1 in breast cancer cell lines and fresh tissues. Tissue microarray blocks containing breast cancer specimens obtained from 210 patients were constructed. Expression of SNAT1 in these specimens was analyzed using immunohistochemical studies. SNAT1 was down-regulated by SNAT1-shRNA in breast cancer cells and the functional significance was measured. Results SNAT1 was up-regulated in breast cancer cell lines and breast cancer tissues. Overexpression of SNAT1 was observed in 127 cases (60.5%). Expression of SNAT1 was significantly associated with tumor size, nodal metastasis, advanced disease stage, Ki-67, and ER status. Suppression of endogenous SNAT1 leads to cell growth inhibition, cell cycle arrest, and apoptosis of 4T1 cells and lowered the phosphorylation level of Akt. SNAT1 expression correlated significantly with p-Akt expression in human breast cancer samples. Conclusions The cross-talk between Akt signaling and SNAT1 might play a critical role in the development and progression of breast cancer, providing an important molecular basis for novel diagnostic markers and new attractive targets in the treatment of breast cancer patients.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3