Deep learning model for automatic image quality assessment in PET

Author:

Zhang Haiqiong,Liu Yu,Wang Yanmei,Ma Yanru,Niu Na,Jing Hongli,Huo Li

Abstract

Abstract Background A variety of external factors might seriously degrade PET image quality and lead to inconsistent results. The aim of this study is to explore a potential PET image quality assessment (QA) method with deep learning (DL). Methods A total of 89 PET images were acquired from Peking Union Medical College Hospital (PUMCH) in China in this study. Ground-truth quality for images was assessed by two senior radiologists and classified into five grades (grade 1, grade 2, grade 3, grade 4, and grade 5). Grade 5 is the best image quality. After preprocessing, the Dense Convolutional Network (DenseNet) was trained to automatically recognize optimal- and poor-quality PET images. Accuracy (ACC), sensitivity, specificity, receiver operating characteristic curve (ROC), and area under the ROC Curve (AUC) were used to evaluate the diagnostic properties of all models. All indicators of models were assessed using fivefold cross-validation. An image quality QA tool was developed based on our deep learning model. A PET QA report can be automatically obtained after inputting PET images. Results Four tasks were generated. Task2 showed worst performance in AUC,ACC, specificity and sensitivity among 4 tasks, and task1 showed unstable performance between training and testing and task3 showed low specificity in both training and testing. Task 4 showed the best diagnostic properties and discriminative performance between poor image quality (grade 1, grade 2) and good quality (grade 3, grade 4, grade 5) images. The automated quality assessment of task 4 showed ACC = 0.77, specificity = 0.71, and sensitivity = 0.83, in the train set; ACC = 0.85, specificity = 0.79, and sensitivity = 0.91, in the test set, respectively. The ROC measuring performance of task 4 had an AUC of 0.86 in the train set and 0.91 in the test set. The image QA tool could output basic information of images, scan and reconstruction parameters, typical instances of PET images, and deep learning score. Conclusions This study highlights the feasibility of the assessment of image quality in PET images using a deep learning model, which may assist with accelerating clinical research by reliably assessing image quality.

Funder

National Key Research and Development Program of China

CAMS fund for Rare Diseases Research

Tsinghua University and PUMCH joint fund

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Framework for Automated Cardiovascular Magnetic Resonance Image Quality Scoring based on EuroCMR Registry Criteria;2023 13th International Conference on Computer and Knowledge Engineering (ICCKE);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3