Chemosensitivity to doxorubicin in primary cells derived from tumor of FVB/N-Trp53tm1Hw1 with TALEN-mediated Trp53 mutant gene

Author:

Yun Woobin,Kim Ji Eun,Jin You Jeong,Roh Yu Jeong,Song Hee Jin,Seol Ayun,Kim Tae Ryeol,Min Kyeong Seon,Park Eun Seo,Park Gi Ho,Kang Hyun Gu,Choi Yeon Shik,Hwang Dae YounORCID

Abstract

Abstract Background To evaluate the chemosensitivity to doxorubicin (DOX) in two primary cells derived from a tumor of FVB/N-Trp53tm1Hw1 knockout (KO) mice with TALEN-mediated Trp53 mutant gene, we evaluated the cell survivability, cell cycle distribution, apoptotic cell numbers and apoptotic protein expression in solid tumor cells and ascetic tumor cells treated with DOX. Results The primary tumor cells showed a significant (P < 0.05) defect for UV-induced upregulation of the Trp53 protein, and consisted of different ratios of leukocytes, fibroblasts, epithelial cells and mesenchymal cells. The IC50 level to DOX was lower in both primary cells (IC50 = 0.12 μM and 0.20 μM) as compared to the CT26 cells (IC50 = 0.32 μM), although the solid tumor was more sensitive. Also, the number of cells arrested at the G0/G1 stage was significantly decreased (24.7–23.1% in primary tumor cells treated with DOX, P < 0.05) while arrest at the G2 stage was enhanced to 296.8–254.3% in DOX-treated primary tumor cells compared with DOX-treated CT26 cells. Furthermore, apoptotic cells of early and late stage were greatly increased in the two primary cell-lines treated with DOX when compared to same conditions for CT26 cells. However, the Bax/Bcl-2 expression level was maintained constant in the primary tumor and CT26 cells. Conclusions To the best of our knowledge, these results are the first to successfully detect an alteration in chemosensitivity to DOX in solid tumor cells and ascetic tumor cells derived from tumor of FVB/N-Trp53tm1Hw1 mice TALEN-mediated Trp53 mutant gene.

Funder

Ministry of Education

Ministry of Food and Drug Safety

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3