Comparison of digital and traditional skin wound closure assessment methods in mice

Author:

Huang Coco X.,Siwan Elisha,Fox Sarah L.,Longfield Matilda,Twigg Stephen M.,Min DanqingORCID

Abstract

Abstract Background Chronic skin wounds are a common complication of many diseases such as diabetes. Various traditional methods for assessing skin wound closure are used in animal studies, including wound tracing, calliper measurements and histological analysis. However, these methods have poorly defined wound closure or practical limitations. Digital image analysis of wounds is an increasingly popular, accessible alternative, but it is unclear whether digital assessment is consistent with traditional methods. This study aimed to optimise and compare digital wound closure assessment with traditional methods, using a diabetic mouse model. Diabetes was induced in male C57BL/6J mice by high-fat diet feeding combined with low dose (65 mg/kg of body weight) streptozotocin injections. Mice fed normal chow were included as controls. After 18 weeks, four circular full-thickness dorsal skin wounds of 4 mm diameter were created per mouse. The wounds were photographed and measured by callipers. Wound closure rate (WCR) was digitally assessed by two reporters using two methods: wound outline (WCR-O) and re-epithelialisation (WCR-E). Wounded skin tissues were collected at 10-days post-wounding and wound width was measured from haematoxylin and eosin-stained skin tissue. Results Between reporters, WCR-O was more consistent than WCR-E, and WCR-O correlated with calliper measurements. Histological analysis supported digital assessments, especially WCR-E, when wounds were histologically closed. Conclusions WCR-O could replace calliper measurements to measure skin wound closure, but WCR-E assessment requires further refinement. Small animal studies of skin wound healing can greatly benefit from standardised definitions of wound closure and more consistent digital assessment protocols.

Funder

Endocrinology Trust Fund, Royal Prince Alfred Hospital

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3