The transcription factor RBP-J-mediated signaling is essential for dendritic cells to evoke efficient anti-tumor immune responses in mice

Author:

Feng Fan,Wang Yao-Chun,Hu Xing-Bin,Liu Xiao-Wei,Ji Gang,Chen Yun-Ru,Wang Lin,He Fei,Dou Guo-Rui,Liang Liang,Zhang Hong-Wei,Han Hua

Abstract

Abstract Background Dendritic cells (DCs) are professional antigen presenting cells that initiate specific immune responses against tumor cells. Transcription factor RBP-J-mediated Notch signaling regulates DC genesis, but whether this pathway regulates DC function in anti-tumor immunity remains unclear. In the present work we attempted to identify the role of Notch signaling in DC-mediated anti-tumor immune response. Results When DCs were co-inoculated together with tumor cells, while the control DCs repressed tumor growth, the RBP-J deficient DCs had lost tumor repression activity. This was most likely due to that DCs with the conditionally ablated RBP-J were unable to evoke anti-tumor immune responses in the solid tumors. Indeed, tumors containing the RBP-J deficient DCs had fewer infiltrating T-cells, B-cells and NK-cells. Similarly, the draining lymph nodes of the tumors with RBP-J-/- DCs were smaller in size, and contained fewer cells of the T, B and NK lineages, as compared with the controls. At the molecular level, the RBP-J deficient DCs expressed lower MHC II, CD80, CD86, and CCR7, resulting in inefficient DC migration and T-cell activation in vitro and in vivo. T-cells stimulated by the RBP-J deficient DCs did not possess efficient cytotoxicity against tumor cells, in contrast to the control DCs. Conclusion The RBP-J-mediated Notch signaling is essential for DC-dependent anti-tumor immune responses. The deficiency of RBP-J impairs the DC-based anti-tumor immunity through affecting series of processes including maturation, migration, antigen presentation and T-cell activation. The Notch signaling pathway might be a target for the establishment of the DC-based anti-tumor immunotherapies.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3