TMEM16A alternative splicing coordination in breast cancer

Author:

Ubby Ifeoma,Bussani Erica,Colonna Antonio,Stacul Giuseppe,Locatelli Martina,Scudieri Paolo,Galietta Luis,Pagani Franco

Abstract

Abstract Background TMEM16A, also known as Anoctamin-1, is a calcium-activated chloride channel gene overexpressed in many tumors. The role of TMEM16A in cancer is not completely understood and no data are available regarding the potential tumorigenic properties of the multiple isoforms generated by alternative splicing (AS). Methods We evaluated TMEM16A AS pattern, isoforms distribution and Splicing Coordination (SC), in normal tissues and breast cancers, through a semi-quantitative PCR-assay that amplifies transcripts across three AS exons, 6b, 13 and 15. Results In breast cancer, we did not observe an association either to AS of individual exons or to specific TMEM16A isoforms, and induced expression of the most common isoforms present in tumors in the HEK293 Flp-In Tet-ON system had no effect on cellular proliferation and migration. The analysis of splicing coordination, a mechanism that regulates AS of distant exons, showed a preferential association of exon 6b and 15 in several normal tissues and tumors: isoforms that predominantly include exon 6b tend to exclude exon 15 and vice versa. Interestingly, we found an increase in SC in breast tumors compared to matched normal tissues. Conclusions As the different TMEM16A isoforms do not affect proliferation or migration and do not associate with tumors, our results suggest that the resulting channel activities are not directly involved in cell growth and motility. Conversely, the observed increase in SC in breast tumors suggests that the maintenance of the regulatory mechanism that coordinates distant alternative spliced exons in multiple genes other than TMEM16A is necessary for cancer cell viability.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3