In silico gene expression analysis – an overview
-
Published:2007-08-07
Issue:1
Volume:6
Page:
-
ISSN:1476-4598
-
Container-title:Molecular Cancer
-
language:en
-
Short-container-title:Mol Cancer
Author:
Murray David,Doran Peter,MacMathuna Padraic,Moss Alan C
Abstract
Abstract
Efforts aimed at deciphering the molecular basis of complex disease are underpinned by the availability of high throughput strategies for the identification of biomolecules that drive the disease process. The completion of the human genome-sequencing project, coupled to major technological developments, has afforded investigators myriad opportunities for multidimensional analysis of biological systems. Nowhere has this research explosion been more evident than in the field of transcriptomics. Affordable access and availability to the technology that supports such investigations has led to a significant increase in the amount of data generated. As most biological distinctions are now observed at a genomic level, a large amount of expression information is now openly available via public databases. Furthermore, numerous computational based methods have been developed to harness the power of these data. In this review we provide a brief overview of in silico methodologies for the analysis of differential gene expression such as Serial Analysis of Gene Expression and Digital Differential Display. The performance of these strategies, at both an operational and result/output level is assessed and compared. The key considerations that must be made when completing an in silico expression analysis are also presented as a roadmap to facilitate biologists. Furthermore, to highlight the importance of these in silico methodologies in contemporary biomedical research, examples of current studies using these approaches are discussed. The overriding goal of this review is to present the scientific community with a critical overview of these strategies, so that they can be effectively added to the tool box of biomedical researchers focused on identifying the molecular mechanisms of disease.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Medicine
Reference46 articles.
1. Scheurle D, DeYoung MP, Binninger DM, Page H, Jahanzeb M, Narayanan R: Cancer gene discovery using digital differential display. Cancer Res. 2000, 60: 4037-4043. 2. Soares MB, Bonaldo MF, Jelene P, Su L, Lawton L, Efstratiadis A: Construction and characterization of a normalized cDNA library. Proc Natl Acad Sci USA. 1994, 91: 9228-9232. 10.1073/pnas.91.20.9228 3. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF: Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1991, 252: 1651-1656. 10.1126/science.2047873 4. Hillier LD, Lennon G, Becker M, Bonaldo MF, Chiapelli B, Chissoe S, Dietrich N, DuBuque T, Favello A, Gish W, Hawkins M, Hultman M, Kucaba T, Lacy M, Le M, Le N, Mardis E, Moore B, Morris M, Parsons J, Prange C, Rifkin L, Rohlfing T, Schellenberg K, Marra M: Generation and analysis of 280, 000 human expressed sequence tags. Genome Res. 1996, 6: 807-828. 10.1101/gr.6.9.807 5. Krizman DB, Wagner L, Lash A, Strausberg RL, Emmert-Buck MR: The Cancer Genome Anatomy Project: EST sequencing and the genetics of cancer progression. Neoplasia. 1999, 1: 101-06. 10.1038/sj.neo.7900002
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|