14-3-3σ gene silencing during melanoma progression and its role in cell cycle control and cellular senescence

Author:

Schultz Julia,Ibrahim Saleh M,Vera Julio,Kunz Manfred

Abstract

Abstract Background The family of 14-3-3 proteins plays an important role in cancer biology by interfering with intracellular signalling pathways and cell cycle checkpoints. The 14-3-3σ isoform acts as a tumor suppressor and is often inactivated during tumor development. Results Here, we demonstrate enhanced CpG methylation of the 14-3-3σ gene in lymph node and cutaneous melanoma metastases compared with primary tumors, associated with dramatically reduced mRNA expression. In line with this, treatment of different metastatic melanoma cell lines with 5-aza-2'-deoxycytidine (5-Aza-CdR), a potent inhibitor of cytosine methylation, significantly induces 14-3-3σ protein expression. Additional treatment with histone deacetylase inhibitor 4-phenylbutyric acid (Pba) further enhances 14-3-3σ expression. Induction of 14-3-3σ expression by 5-Aza-CdR/Pba treatment leads to almost complete inhibition of cell proliferation, with cells predominantly arrested in G2-M. The antiproliferative effect of 5-Aza-CdR/Pba was reversed in 14-3-3σ knockdown cells. Similarly, melanoma cell lines stably overexpressing 14-3-3σ show dramatically reduced cell proliferation rates. Moreover, synchronous 14-3-3σ stably overexpressing cells do not progress through cell cycle, but display a permanent increase in the population of 4n DNA containing cells. Interestingly, overexpression of 14-3-3σ induces senescence of melanoma cells and is involved in melanoma cell senescence under genotoxic stress. Finally, 14-3-3σ knockdown supports migratory capacity of melanoma cells in vitro, while 14-3-3σ overexpression has opposing effects. Conclusion Taken together, the present report indicates that epigenetic silencing of 14-3-3σ might contribute to tumor progression in malignant melanoma via loss of cell cycle control, impaired cellular senescence program and support of migratory capacity.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3