Identification of key sex-specific pathways and genes in the subcutaneous adipose tissue from pigs using WGCNA method

Author:

Wang Huiyu,Wang Xiaoyi,Li Mingli,Wang Shuyan,Chen Qiang,Lu Shaoxiong

Abstract

Abstract Background Adipose tissues (ATs), including visceral ATs (VATs) and subcutaneous ATs (SATs), are crucial for maintaining energy and metabolic homeostasis. SATs have been found to be closely related to obesity and obesity-induced metabolic disease. Some studies have shown a significant association between subcutaneous fat metabolism and sexes. However, the molecular mechanisms for this association are still unclear. Here, using the pig as a model, we investigated the systematic association between the subcutaneous fat metabolism and sexes, and identified some key sex-specific pathways and genes in the SATs from pigs. Results The results revealed that 134 differentially expressed genes (DEGs) were identified in female and male pigs from the obese group. A total of 17 coexpression modules were detected, of which six modules were significantly correlated with the sexes (P < 0.01). Among the significant modules, the greenyellow module (cor = 0.68, P < 9e-06) and green module (cor = 0.49, P < 0.003) were most significantly positively correlated with the male and female, respectively. Functional analysis showed that one GO term and four KEGG pathways were significantly enriched in the greenyellow module while six GO terms and six KEGG pathways were significantly enriched in the green module. Furthermore, a total of five and two key sex-specific genes were identified in the two modules, respectively. Two key sex-specific pathways (Ras-MAPK signaling pathway and type I interferon response) play an important role in the SATs of males and females, respectively. Conclusions The present study identified some key sex-specific pathways and genes in the SATs from pigs, which provided some new insights into the molecular mechanism of being involved in fat formation and immunoregulation between pigs of different sexes. These findings may be beneficial to breeding in the pig industry and obesity treatment in medicine.

Funder

Yunnan Swine Industry Technology System Program

Yunnan Province Important National Science & Technology Specific Projects

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3