Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression

Author:

Luo Zai,Rong Zeyin,Zhang Jianming,Zhu Zhonglin,Yu Zhilong,Li Tengfei,Fu Zhongmao,Qiu Zhengjun,Huang Chen

Abstract

Abstract Background As a novel type of noncoding RNAs, covalently closed circular RNAs (circRNAs) are ubiquitously expressed in eukaryotes. Emerging studies have related dysregulation of circRNAs to tumorigenesis. However, the biogenesis, regulation, function and mechanism of circRNAs in gastric cancer (GC) remain largely unclear. Methods The expression profile of circRNAs in 6 pairs of GC tissues and adjacent non-tumor tissues was analyzed by RNA-sequencing. Quantitative real-time PCR was used to determine the expression level of circCCDC9 in GC tissues and cell lines. Then, functional experiments in vitro and in vivo were employed to explore the effects of circCCDC9 on tumor growth and metastasis in GC. Mechanistically, dual luciferase reporter, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down assays were performed to confirm that circCCDC9 directly sponged miR-6792-3p and alleviated suppression on target CAV1 expression. Results Evidently down-regulated expression of circCCDC9 was observed in both GC tissues and cell lines. Expression of circCCDC9 was negatively correlated with tumor size, lymph node invasion, advanced clinical stage and overall survival in GC patients. Functionally, overexpression of circCCDC9 significantly inhibited the proliferation, migration and invasion of GC cell lines in vitro and tumor growth and metastasis in vivo, whereas miR-6792-3p mimics counteracted these effects. Mechanistic analysis demonstrated that circCCDC9 acted as a “ceRNA” of miR-6792-3p to relieve the repressive effect of miR-6792-3p on its target CAV1, then suppressed the tumorigenesis of GC. Conclusions CircCCDC9 functions as a tumor suppressor in inhibiting the progression of GC through miR-6792-3p/CAV1 axis, which has provided an exploitable biomarker and therapeutic target for patients with GC.

Funder

National Natural Science Foundation of China

Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support

Shanghai Jiaotong University Medical Cross Fund

Shanghai Municipal Science and Technology Committee

Science and Technology Commission Project of Songjiang District

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3