Abstract
Abstract
Background
Accumulating evidence indicates that long non-coding RNAs (lncRNAs) are potential biomarkers and key regulators of tumour development and progression. SOX2 overlapping transcript (SOX2OT) is a novel lncRNA that acts as a potential biomarker and is involved in the development of cancer and cancer stem cells. However, the clinical significance and molecular mechanism of SOX2OT in bladder cancer are still unknown.
Methods
The expression level of SOX2OT was determined by RT-qPCR in a total of 106 patients with urothelial bladder cancer and in different bladder cancer cell (BCC) lines. Bladder cancer stem cells (BCSCs) were isolated from BCCs using flow cytometry based on the stem cell markers CD44 and ALDH1. Loss-of-function experiments were performed to investigate the biological roles of SOX2OT in the stemness phenotype of BCSCs. Comprehensive transcriptional analysis, RNA FISH, dual-luciferase reporter assays and western blots were performed to explore the molecular mechanisms underlying the functions of SOX2OT.
Results
SOX2OT was highly expressed in bladder cancer, and increased SOX2OT expression was positively correlated with a high histological grade, advanced TNM stage and poor prognosis. Further experiments demonstrated that knockdown of SOX2OT inhibited the stemness phenotype of BCSCs. Moreover, inhibition of SOX2OT delayed xenograft tumour growth and decreased metastases in vivo. Mechanistically, we found that SOX2OT was mainly distributed in the cytoplasm and positively regulated SOX2 expression by sponging miR-200c. Furthermore, SOX2 overexpression reversed the SOX2OT silencing-induced inhibition of the BCSC stemness phenotype.
Conclusion
This study is the first to demonstrate that SOX2OT plays an important regulatory role in BCSCs and that SOX2OT may serve as a potential diagnostic biomarker and therapeutic target in bladder cancer.
Funder
The National Natural Science Foundation of China
the Fund for Fostering Young Scholars of Peking University Health Science Center
The Beijing Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Medicine
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献