A novel IFNα-induced long noncoding RNA negatively regulates immunosuppression by interrupting H3K27 acetylation in head and neck squamous cell carcinoma

Author:

Ma HailongORCID,Chang Hanyue,Yang Wenyi,Lu Yusheng,Hu Jingzhou,Jin Shufang

Abstract

Abstract Background Interferon alpha (IFNα) is a well-established regulator of immunosuppression in head and neck squamous cell carcinoma (HNSCC), while the role of long noncoding RNAs (lncRNAs) in immunosuppression remains largely unknown. Methods Differentially expressed lncRNAs were screened under IFNα stimulation using lncRNA sequencing. The role and mechanism of lncRNA in immunosuppression were investigated in HNSCC in vitro and in vivo. Results We identified a novel IFNα-induced upregulated lncRNA, lncMX1–215, in HNSCC. LncMX1–215 was primarily located in the cell nucleus. Ectopic expression of lncMX1–215 markedly inhibited expression of the IFNα-induced, immunosuppression-related molecules programmed cell death 1 ligand 1 (PD-L1) and galectin-9, and vice versa. Subsequently, histone deacetylase (HDAC) inhibitors promoted the expression of PD-L1 and galectin-9. Binding sites for H3K27 acetylation were found on PD-L1 and galectin-9 promoters. Mechanistically, we found that lncMX1–215 directly interacted with GCN5, a known H3K27 acetylase, to interrupt its binding to H3K27 acetylation. Clinically, negative correlations between lncMX1–215 and PD-L1 and galectin-9 expression were observed. Finally, overexpression of lncMX1–215 suppressed HNSCC proliferation and metastasis capacity in vitro and in vivo. Conclusions Our results suggest that lncMX1–215 negatively regulates immunosuppression by interrupting GCN5/H3K27ac binding in HNSCC, thus providing novel insights into immune checkpoint blockade treatment.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3