METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer
-
Published:2020-06-17
Issue:1
Volume:19
Page:
-
ISSN:1476-4598
-
Container-title:Molecular Cancer
-
language:en
-
Short-container-title:Mol Cancer
Author:
Chen Xiaoxiang, Xu Mu, Xu Xueni, Zeng Kaixuan, Liu Xiangxiang, Pan Bei, Li Chenmeng, Sun Li, Qin Jian, Xu Tao, He Bangshun, Pan Yuqin, Sun Huilin, Wang ShukuiORCID
Abstract
Abstract
Background
Colorectal cancer (CRC) is one of the leading causes of tumor-related death worldwide, and its main cause of death is distant metastasis. Methyltransferase-like 14(METTL14), a major RNA N6-adenosine methyltransferase, is involved in tumor progression via regulating RNA function. The goal of the study is to uncover the biological function and molecular mechanism of METTL14 in CRC.
Methods
Quantitative real-time PCR (qRT-PCR), western blot and immunohistochemical (IHC) assays were employed to detect METTL14 and SOX4 in CRC cell lines and tissues. The biological functions of METTL14 were demonstrated using in vitro and in vivo experiments. Chromatin immunoprecipitation (ChIP), Transcrptomic RNA sequencing (RNA-Seq), m6A-RNA immunoprecipitation sequencing (MeRIP-Seq), RNA immunoprecipitation and luciferase reporter assays were used to explore the mechanism of METTL14 action.
Results
METTL14 expression was significantly downregulated in CRC and decreased METTL14 was associated with poor overall survival (OS). Both the univariate and multivariate Cox regression analysis indicated that METTL14 was an independent prognostic factor in CRC. Moreover, lysine-specific histone demethylase 5C(KDM5C)-mediated demethylation of histone H3 lysine 4 tri-methylation(H3K4me3) in the promoter of METTL14 inhibited METTL14 transcription. Functionally, we verified that METTL14 inhibited CRC cells migration, invasion and metastasis through in vitro and in vivo assays, respectively. Furthermore, we identified SRY-related high-mobility-group box 4(SOX4) as a target of METTL14-mediated m6A modification. Knockdown of METTL14 markedly abolished SOX4 mRNA m6A modification and elevated SOX4 mRNA expression. We also revealed that METTL14-mediated SOX4 mRNA degradation relied on the YTHDF2-dependent pathway. Lastly, we demonstrated that METTL14 might inhibit CRC malignant process partly through SOX4-mediated EMT process and PI3K/Akt signals.
Conclusions
Decreased METTL14 facilitates tumor metastasis in CRC, suggesting that METTL14 might be a potential prognostic biomarker and effective therapeutic target for CRC.
Graphical abstract
Funder
The National Nature Science Foundation of China Jiangsu Provincial Key Research and Development Plan Key Project of Science and Technology Development of Nanjing Medicine Innovation team of Jiangsu provincial health-strengthening engineering by science and education Jiangsu Youth Medical Talents Training Project
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Medicine
Reference44 articles.
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34. 2. Xu RH, Muro K, Morita S, Iwasa S, Han SW, Wang W, Kotaka M, Nakamura M, Ahn JB, Deng YH, et al. Modified XELIRI (capecitabine plus irinotecan) versus FOLFIRI (leucovorin, fluorouracil, and irinotecan), both either with or without bevacizumab, as second-line therapy for metastatic colorectal cancer (AXEPT): a multicentre, open-label, randomised, non-inferiority, phase 3 trial. Lancet Oncol. 2018;19:660–71. 3. He C. Grand challenge commentary: RNA epigenetics? Nat Chem Biol. 2010;6:863–5. 4. Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 2011;39(Database issue):D195–201. 5. Machnicka MA, Milanowska K, Osman OO, Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al. MODOMICS: a database of RNA modification pathways--2013 update. Nucleic Acids Res. 2013;41(Database issue):D262–7.
Cited by
220 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|