Abstract
AbstractmRNA vaccines have become a promising platform for cancer immunotherapy. During vaccination, naked or vehicle loaded mRNA vaccines efficiently express tumor antigens in antigen-presenting cells (APCs), facilitate APC activation and innate/adaptive immune stimulation. mRNA cancer vaccine precedes other conventional vaccine platforms due to high potency, safe administration, rapid development potentials, and cost-effective manufacturing. However, mRNA vaccine applications have been limited by instability, innate immunogenicity, and inefficient in vivo delivery. Appropriate mRNA structure modifications (i.e., codon optimizations, nucleotide modifications, self-amplifying mRNAs, etc.) and formulation methods (i.e., lipid nanoparticles (LNPs), polymers, peptides, etc.) have been investigated to overcome these issues. Tuning the administration routes and co-delivery of multiple mRNA vaccines with other immunotherapeutic agents (e.g., checkpoint inhibitors) have further boosted the host anti-tumor immunity and increased the likelihood of tumor cell eradication. With the recent U.S. Food and Drug Administration (FDA) approvals of LNP-loaded mRNA vaccines for the prevention of COVID-19 and the promising therapeutic outcomes of mRNA cancer vaccines achieved in several clinical trials against multiple aggressive solid tumors, we envision the rapid advancing of mRNA vaccines for cancer immunotherapy in the near future. This review provides a detailed overview of the recent progress and existing challenges of mRNA cancer vaccines and future considerations of applying mRNA vaccine for cancer immunotherapies.
Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Medicine
Cited by
552 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献