Kinematic movement and balance parameter analysis in neurological gait disorders

Author:

Na Chuh-Hyoun,Siebers Hannah Lena,Reim Julia,Eschweiler Jörg,Hildebrand Frank,Clusmann Hans,Betsch Marcel

Abstract

Abstract Background Neurological gait disorders are mainly classified based on clinical observation, and therefore difficult to objectify or quantify. Movement analysis systems provide objective parameters, which may increase diagnostic accuracy and may aid in monitoring the disease course. Despite the increasing wealth of kinematic movement and balance parameter data, the discriminative value for the differentiation of neurological gait disorders is still unclear. We hypothesized that kinematic motion and balance parameter metrics would be differently altered across neurological gait disorders when compared to healthy controls. Methods Thirty one patients (9 normal pressure hydrocephalus < NPH > , 16 cervical myelopathy < CM > , 6 lumbar stenosis < LST >) and 14 healthy participants were investigated preoperatively in an outpatient setting using an inertial measurement system (MyoMotion) during 3 different walking tasks (normal walking, dual-task walking with simultaneous backward counting, fast walking). In addition, the natural postural sway of participants was measured by pedobarography, with the eyes opened and closed. The range of motion (ROM) in different joint angles, stride time, as well as sway were compared between different groups (between-subject factor), and different task conditions (within-subject factor) by a mixed model ANOVA. Results Kinematic metrics and balance parameters were differently altered across different gait disorders compared to healthy controls. Overall, NPH patients significantly differed from controls in all movement parameters except for stride time, while they differed in balance parameters only with regard to AP movement. LST patients had significantly reduced ROMs of the shoulders, hips, and ankles, with significantly altered balance parameters regarding AP movement and passed center-of-pressure (COP) distance. CM patients differed from controls only in the ROM of the hip and ankle, but were affected in nearly all balance parameters, except for force distribution. Conclusion The application of inertial measurement systems and pedobarography is feasible in an outpatient setting in patients with different neurological gait disorders. Rather than defining singular discriminative values, kinematic gait and balance metrics may provide characteristic profiles of movement parameter alterations in the sense of specific ´gait signatures´ for different pathologies, which could improve diagnostic accuracy by defining objective and quantifiable measures for the discrimination of different neurological gait disorders. Trial registration The study was retrospectively registered on the 27th of March 2023 in the ‘Deutsches Register für Klinische Studien’ under the number DRKS00031555.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3