PLGA/BGP/Nef porous composite restrains osteoclasts by inhibiting the NF-κB pathway, enhances IGF-1-mediated osteogenic differentiation and promotes bone regeneration

Author:

Wu Feng,Wu Zhenxu,Ye Zhijun,Niu Guoqing,Ma Zhiliang,Zhang Peibiao

Abstract

Abstract Background Novel bone substitutes are urgently needed in experimental research and clinical orthopaedic applications. There are many traditional Chinese medicines that have effects on bone repair. However, application of natural medicines in traditional Chinese medicine to bone tissue engineering and its mechanism were rarely reported. Results In this study, the osteogenic ability of bioactive glass particles (BGPs) and the osteogenic and osteoclastic ability of neferine (Nef) were fused into PLGA-based bone tissue engineering materials for bone regeneration. BGPs were prepared by spray drying and calcination. Particles and Nef were then mixed with PLGA solution to prepare porous composites by the phase conversion method. Here we showed that Nef inhibited proliferation and enhanced ALP activity of MC3T3-E1 cells in a dose‐ and time‐dependent manner. And the composites containing Nef could also inhibit RANKL‐induced osteoclast formation (p < 0.05). Mechanistically, the PLGA/BGP/Nef composite downregulated the expression of NFATC1 by inhibiting the NF-κB pathway to restrain osteoclasts. In the other hands, PLGA/BGP/Nef composite was first demonstrated to effectively activate the IGF-1R/PI3K/AKT/mTOR pathway to enhance IGF-1-mediated osteogenic differentiation. The results of animal experiments show that the material can effectively promote the formation and maturation of new bone in the skull defect site. Conclusions The PLGA/BGP/Nef porous composite can restrain osteoclasts by inhibiting the NF-κB pathway, enhance IGF-1-mediated osteogenic differentiation and promotes bone regeneration, and has the potential for clinical application.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3