MiR-31-5p regulates the neuroinflammatory response via TRAF6 in neuropathic pain

Author:

Liu Yuqi,Wang Lijuan,Zhou Chengcheng,Yuan Yuan,Fang Bin,Lu Kaimei,Xu Fangxia,Chen Lianhua,Huang Lina

Abstract

Abstract Background Neuropathic pain is chronic pain and has few effective control strategies. Studies have demonstrated that microRNAs have functions in neuropathic pain. However, no study has been conducted to demonstrate the role and mechanism of microRNA (miR)-31-5p in neuropathic pain. Accordingly, this study sought to determine the pathological role of miR-31-5p in chronic constriction injury (CCI) -induced neuropathic pain mouse models. Methods We used CCI surgery to establish mouse neuropathic pain model. Behavioral tests were performed to evaluate pain sensitivity of mice. Expressions of miR-31-5p and inflammatory cytokines in dorsal root ganglion (DRG) were examined by polymerase chain reaction. Animals or cells were received with/without miR-31-5p mimic or inhibitor to investigate its role in neuropathic pain. The mechanism of miR-31-5p was assayed using western blotting, immunofluorescence staining and dual-luciferase reporter assay. Results We found that CCI led to a significant decrease in miR-31-5p levels. Knockout of miR-31-5p and administration of miPEP31 exacerbated pain in C57BL/6 mice. Meanwhile, miR-31-5p overexpression increased the paw withdrawal threshold and latency. TRAF6 is one of the target gene of miR-31-5p, which can trigger a complex inflammatory response. TRAF6 was associated with pain and that reducing the DRG expression of TRAF6 could alleviate pain. In addition, miR-31-5p overexpression inhibited the TRAF6 expression and reduced the neuroinflammatory response. Conclusions All the results reveal that miR-31-5p could potentially alleviate pain in CCI mouse models by inhibiting the TRAF6 mediated neuroinflammatory response. MiR-31-5p upregulation is highlighted here as new target for CCI treatment.

Funder

the National Natural Science Foundation of China

Shanghai Sailing Program

the Natural Science Foundation of Shanghai, China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3