Upregulation of long intergenic non-coding RNA LINC00326 inhibits non-small cell lung carcinoma progression by blocking Wnt/β-catenin pathway through modulating the miR-657/dickkopf WNT signaling pathway inhibitor 2 axis

Author:

Zhang Yingqian,Yuan Jiao,Guo Mengfei,Xiang Run,Xie Tianpeng,Zhuang Xiang,Dai Wei,Li Qiang,Lai Qi

Abstract

Abstract Background Long intergenic non-coding RNA 326 (LINC00326) modulates hepatocarcinogenic lipid metabolism. However, the ability of LINC00326 to modulate the highly aggressive non-small cell lung carcinoma (NSCLC) is unknown. Here, LINC00326 in NSCLC was investigated, together with its effects on tumor malignancy and the underlying mechanisms of action. Methods LINC00326 levels in tumor tissues and cell lines were measured by Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and RNA fluorescence in situ hybridization (FISH). Proliferation and apoptosis were assessed in cell lines by Cell Counting Kit-8 (CCK-8), EdU staining assays and flow cytometry, respectively, and tumor growth was measured in mouse models. Possible microRNA targets of LINC00326 were predicted by bioinformatics and verified by RNA pull-down and immunoprecipitation and luciferase reporter assays. Western blotting was used to evaluate the expression of Wnt/β-catenin-associated proteins. Results  LINC00326 was downregulated in tumor tissues and cell lines. Knockdown of LINC00326 stimulated NSCLC cell proliferation and suppressed apoptosis in vitro, as well as enhancing xenograft tumor growth. LINC00326 sponged miR-657, and dickkopf WNT signaling pathway inhibitor 2 (DKK2) was found to be directly targeted by miR-657, with LINC00326 positively regulating its expression through sponging miR-657. The actions of LINC00326 knockdown on proliferation and apoptosis were reversed by stimulation of the miR-657/DKK2 axis. Furthermore, overexpression of miR-657 mitigated DKK2 inhibition on Wnt/β-catenin signaling. Conclusions LINC00326/miR-657/DKK2 axis signaling blocked tumor-associated functions in NSCLC cells through the targeting Wnt/β-catenin pathway. This suggests that this pathway could be a target for NSCLC treatment.

Funder

Scientific Research Foundation of Southwest Medical University

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3