PHF5A regulates the expression of the DOCK5 variant to promote HNSCC progression through p38 MAPK activation

Author:

Liu Chao,Li Guo,Zheng Siyuan,She Li,Lu Shanhong,Wang Yunyun,Huang Donghai,Zhang Xin,Sun Lunquan,Liu Yong,Qiu Yuanzheng

Abstract

Abstract Background Previously, we identified an oncogenic splicing variant of DOCK5 in head and neck squamous cell carcinoma (HNSCC); however, the mechanism for the generation of this specific DOCK5 variant remains unknown. This study aims to explore the potential spliceosome genes involved in the production of the DOCK5 variant and validate its role in regulating the progression of HNSCC. Methods The differentially expressed spliceosome genes involved in the DOCK5 variant were analysed in The Cancer Genome Atlas (TCGA), and the correlation between the DOCK5 variant and the potential spliceosome gene PHF5A was verified by qRT-PCR. The expression of PHF5A was detected in HNSCC cells, TCGA data and a separate primary tumour cohort. The functional role of PHF5A was examined using CCK-8, colony formation, cell scratch and Transwell invasion assays in vitro and validated in vivo in xenograft models of HNSCC. Western blot analysis was used to explore the potential mechanism of PHF5A in HNSCC. Results PHF5A was one of the top upregulated spliceosome genes in TCGA HNSCC samples with highly expressed DOCK5 variants. Knockdown or overexpression of PHF5A in HNSCC cells correspondingly altered the level of the DOCK5 variant. PHF5A was highly expressed in tumour cells and tissues and correlated with a worse prognosis of HNSCC. Loss- and gain-of-function experiments demonstrated that PHF5A could promote the proliferation, migration and invasion of HNSCC cells in vitro and in vivo. Moreover, PHF5A inhibition reversed the oncogenic effect of the DOCK5 variant in HNSCC. Western blot analysis showed that PHF5A activated the p38 MAPK pathway, and inhibition of p38 MAPK further reversed the effect of PHF5A on the proliferation, migration and invasion of HNSCC cells. Conclusion PHF5A regulates the alternative splicing of DOCK5 to promote HNSCC progression through p38 MAPK activation, which provides potential therapeutic implications for HNSCC patients.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

China Postdoctoral Science Foundation

Science and Technology Innovation Program of Hunan Province

Youth Science Foundation of Xiangya Hospital

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3