Involvement of transcribed lncRNA uc.291 in hyperproliferative skin disorders

Author:

Mancini MaraORCID,Sergio SimoneORCID,Cappello AngelaORCID,Farkas TimeaORCID,Bernassola FrancescaORCID,Scarponi ClaudiaORCID,Albanesi CristinaORCID,Melino GerryORCID,Candi EleonoraORCID

Abstract

AbstractThe uc.291 transcript controls keratinocytes differentiation by physical interaction with ACTL6A and subsequent induction of transcription of the genes belonging to the epidermal differentiation complex (EDC). Uc.291 is also implicated in the dedifferentiation phenotype seen in poorly differentiated cutaneous squamous cell carcinomas. Here, we would like to investigate the contribution of uc.291 to the unbalanced differentiation state of keratinocytes observed in hyperproliferative skin disorders, e. g., psoriasis. Psoriasis is a multifactorial inflammatory disease, caused by alteration of keratinocytes homeostasis. The imbalanced differentiation state, triggered by the infiltration of immune cells, represents one of the events responsible for this pathology. In the present work, we explore the role of uc.291 and its interactor ACTL6A in psoriasis skin, using quantitative real-time PCR (RT-qPCR), immunohistochemistry and bioinformatic analysis of publicly available datasets. Our data suggest that the expression of the uc.291 and of EDC genes loricrin and filaggrin (LOR, FLG) is reduced in lesional skin compared to nonlesional skin of psoriatic patients; conversely, the mRNA and protein level of ACTL6A are up-regulated. Furthermore, we provide evidence that the expression of uc.291, FLG and LOR is reduced, while ACTL6A mRNA is up-regulated, in an in vitro psoriasis-like model obtained by treating differentiated keratinocytes with interleukin 22 (IL-22). Furthermore, analysis of a publicly available dataset of human epidermal keratinocytes treated with IL-22 (GSE7216) confirmed our in vitro results. Taken together, our data reveal a novel role of uc.291 and its functional axis with ACTL6A in psoriasis disorder and a proof of concept that biological inhibition of this molecular axis could have a potential pharmacological effect against psoriasis and, in general, in skin diseases with a suppressed differentiation programme.

Funder

Ministero della Salute

Lazio Innova

Associazione Italiana per la Ricerca sul Cancro

Ministry of Health and IDI-IRCCS

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3