Reactionary and reparative dentin formation after pulp capping: Hydrogel vs. Dycal

Author:

Njeh A,Uzunoğlu E,Ardila-Osorio H,Simon S,Berdal A,Kellermann O,Goldberg M

Abstract

Abstract Background After indirect capping, injured odontoblasts generate reactionary dentin, whereas after direct capping of a pulp exposure pulp, cells stimulate the formation of reparative dentin. The aim of this study was to evaluate and compare the effects of two direct capping agents on pulp tissue reactions: Hydrogel (a bovine serum albumin (BSA)/glutaraldehyde,) and Dycal (a calcium hydroxide-based capping agent). Methods In 6-week-old male Sprague–Dawley rats, occlusal cavities were drilled in the first maxillary molars, and the pulps were exposed. In one of the groups, 24 right molars were capped with Hydrogel (G1), whereas in the other group 24 M were capped with Dycal (G2). After 1 to 4 weeks, the rats were anaesthetized intraperitoneally (six rats per group) and perfused intracardiacally with 4 % paraformaldehyde fixative. Maxillary molar’s blocks were demineralized with a 4.13 % EDTA solution, embedded in paraffin, and the sections were histologically stained. Measurements of the thickness of reactionary dentin and area of inflammation were measured with ImageJ software. Results were compared with Kruskal Wallis and Mann Whitney U tests at p = 0.05. Results One week after Dycal capping, a statistically significant large number of aggregates of pulp cells enlightened pulpal inflammation compared to Hydrogel. At 2–3 weeks, reactionary dentin formation was increased at the periphery of the pulp chamber. After 4 weeks, a dentinal bridge sealed partially the pulp exposure, while tunnel defects persisting across reparative osteodentin. In contrast, 1 week after Hydrogel capping, inflammation was barely detectable. Hydrogel induced the massive apposition of reactionary dentin at the pulp periphery, and reparative dentin was developing within the pulp. The degradation of Hydrogel releases glutaraldehyde acting on pulp cells as a fixative and consequently favoring BSA bioactivity. Conclusion After Hydrogel capping, nemosis stimulates pulp mineralization, improving reactionary and reparative dentin formation. In contrast, the highly alkaline compound Dycal produced inflammation within the pulp. The differences between the two capping agents suggest that Hydrogel might present some clinical advantages over Dycal.

Publisher

Springer Science and Business Media LLC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3